CLOAF: CoLlisiOn-Aware Human Flow

Supplementary Material

The followong supplementary material is organized as
follows. In Sec. A, we provide more qualitative illustrations
on how CLOAF works. In Sec. B, we discuss the technical
details of the ablation study, discussed in the main paper.
In Sec. C, we provide implementaiton details on the cus-
tomized motion field and discuss the comparison between
such simple field with the one induced by the neural net-
work.

A. Main Experiments

In Sec. 4.5 in the main paper, we discuss different strategies
to obtain the initial body posture O for the integration. In
Fig. A.1, we demonstrate qualitative comparison between
initial bodies obtained with different strategies. Successive
Frames produces a reasonable estimate, since the pose in
neighboring frames is very similar. If Jitter manages to find
an estimate without self-intersections, then it is also decent,
since only a few body parameters are changed, hence, most
of the non-intersected body parts are not affected at all. The
Keyposes-produced neighbor is more distant from the given
estimate, though, in some circumstances, it can be an only
option.

We have not found the choice of the starting pose for Jiz-
ter to be critical. For Keyposes, the sensitivity is larger be-
cause the key poses have been chosen to be diverse. Hence,
usually only one pose among all yields a good starting es-
timate. It should be noted that increasing the number of
key poses helps only marginally, while making the neigh-
bor search more costly.

In video CLOAF.mp4, we compare HMR2.0 with
CLOAF used as post-processing on one video sequence
of 3DPW-test set. As discussed in Sec. 4.2, CLOAF can
be used for efficient removal of self-intersections. The in-
verse operation of Eq. 6 effectively averages the velocities
of all points on the limb producing the realistic motion, even
when limbs touch each other and points in contact have the
same velocities, as shown in the video.

B. Ablations and Technical details

Optimal sampling. In Ablations in Sec. 4.5, we speculate
that the linear approximation of the SMPL transformation
holds for small displacements §O. Here we verify this as-
sumption. As in the main paper, we denote f to be the dis-
tance between two SMPL bodies ©y and ©1 = O + §O,
computed in the coordinate space:

£(60) = X (04 + 60) — X(Oy), (B.1)

where the dO is the random noise of the magnitude ||0O].
The forward SMPL transformation X (©) is computed with

Eq. 3, sampling all vertices in the SMPL mesh S = 6890,
hence, f € R3%,

We provide Fig. B.2 for an illustration. We measure the
distance || f(0O)|| (left axis), averaged over all points, with
respect to ||§0)]| that varies from 10~? to 10'. Addition-
ally, we compute the relative error RE following Eq. 12
(right axis). Every number is averaged across 10 restarts
of §©. The black line in the background shows the linear
trend. The green area marks the range of values of the mo-
tion fields that the pretrained network f,, motion gives in
our experiments. As assumed, for the entire range of dis-
placements, excluding too large values ||§©]| > 1071, the
linear approximation holds. For larger values of |60, the
regime becomes non-linear, and approximation is not valid
anymore, however, in our experiments, we never observe
such large displacements. In the wide range of ||0O|| mag-
nitudes, including the target green area, the relative error
RE is low (RE < 10~1'). Hence, our inverse procedure
is accurate. The ablation experiment in Fig. 5 in the main
paper is done for ||§0|| = 1072 that corresponds to the up-
per bound of the target regime (green area), as illustrated in
Fig. B.2.

Note that all computations with the inverse Jacobian for
Fig. B.2 (as for all experiments of the main paper) are done
in double precision, since SMPL transformation is very sen-
sitive to single-precision roundings. The numbers for rela-
tive error RE (Eq. 12) and timing in Fig. 5 are done by av-
eraging multiple runs; the number of restarts is 10 for both
metrics.

To illustrate what RE < 107! looks like, we provide
Fig. B.3. We sample “ground-truth” vector §©gr once (val-
ues in green) and only vary its magnitude to be 10~ (left)
and 1072 (right). Using our inverse procedure, we recon-
struct 60 (values in red). The estimate on the left is much
less accurate than the one on the right, which is reflected
in the relative error RE (7.0 - 10! and 7.1 - 1072, respec-
tively). We see that the values RE < 107! can be seen as
an indicator of a proper reconstruction.

Linear interpolation. Precise integration in Eq. 6 re-
quires an estimate of ©(¢). During training, we use the
approximation O to skip an inversion step and to stop er-
ror accumulation. This could yield a self-intersecting pose.
But this only occurs at training time. At inference time,
we compute the entire pose sequence reusing the previous
estimates. They are not self-intersecting by construction be-
cause we start from a non-penetrated body.

It might be assumed that the method works only when
linear interpolant poses are not in self-intersection. How-
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Figure A.1. Picking the Initial Body Posture. We demonstrate the examples of the initial body postures O to the integration, given the

initial estimate that has self-intersections. We compare three strategies for our CLOAF method,

, Jitter and Keyposes.

None of them has self-penetrations, however, they are different in terms of the distance from the initial estimate.
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Figure B.2. SMPL linearity and the Relative Error. SMPL for-
ward transformation can be seen as linear in the wide range of §©
deformations. It includes the target area (shown in green) of val-
ues that the trained network produces. The Relative Error RE is
low in the area as well, which proves our method to be accurate.

ever, the supplementary video CLOAF . mp4 shows this not
to be the case. When the person stands up, the hands move
accordingly, even though the linear interpolation is entirely
inside the body and should not produce any motion at all.

Technical Details. When dealing with ODEs, efficient in-
tegration is a key. To this end, we found that all techniques
described is Sec. 3 are crucial. Excluding one of these ei-
ther prevents convergence or makes it too slow. Here we
will note a few examples. Without the 5] approximation,
it would take minutes per training sample, instead of less
than a second. As for the integration step, it must be small,
which is specifically enforced by the solver (Sec. 3) and
the optimal sampling (Sec. 4.5). Too long At time inter-
vals decrease stability of the training and the network does
not converge to a reasonable solution. During training in
all our experiments, we sample consecutive poses, hence,
Atpar = 1.

C. Custom Field

In Sec. 4.4, we propose a structure for the simplified motion
field that comprises the direction from the selected region
towards the target. For the sake of reproducibility, we pro-
vide here an exact formulation of such field (only its non-
Zero component):
X7 —X
X)=F———7 (C2)
) = e e

where x7 is the target point, x is the point in the selected re-
gion, F' = 1072 is the magnitude of the field, and ¢ = 106
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Figure B.3. Reconstruction of 6O at different magnitudes. We randomly sample the vector §©gr and vary only its magnitude to be
10~* and 10~ 2 (green). It brings reconstructions 6© of different quality, RE = 7.0 - 10~ ! and RE = 7.1 - 10~ 2, respectively (red). The
values RE < 107! can be seen as an indicator of a proper reconstruction.

is a small regularization for stability. In other words, the
field is represented by a vector of a fixed magnitude point-
ing from the selected region towards the target.

When the non-zero field described by Eq. C.2 is defined,
it is blended with the zero field 0, as described in Sec. 4.4
in the main paper. The inner and outer regions rj, and 7oy
are 10 and 30 mm, respectively. The larger values make
the field less precise, while the smaller values make it more
localized, hence, less smoother, which complexifies the in-
tegration.

In the supplementary video grab_the_box.mp4, we
demonstrate the interaction with objects discussed in
Sec. 4.4 and depicted in Fig. 4 in the main paper. The video
shows the integration process for two fields, with and with-
out constraints.

Simple Field vs. NN. In the main experiments we ex-
ploit a pre-trained neural network to induce the motion field,
while later we demonstrate that the simpler field can be
used to produce customized motions. The natural ques-
tion arises: why not to use the simple field for the main
experiments without any neural networks at all? The an-
swer is that the neural network is more flexible and can
produce more complex motions than the target-driven field,
as in Eq. C.2. As discussed in Sec. 3, the network learns
to produce an interpolation in the parametric space, while
moving in the coordinate space. The integration of the
simple field can be seen as an interpolation in the coordi-
nate space, while optimizing a very simple energy function
E = ||x(0) — x(01)]| , where O is the target pose, with
infinitesimal steps 0. Such a simple field easily gets stuck
in local optima, preventing further improvement.

Yet, as shown in Sec 4.4, the simple field approach al-
lows for customization of motion, a task that is not as easily
achieved with a neural network.
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