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Overview

Evaluation

Visual results

Visual Grounding of phrases:

Localize any textual query into a given image.

Approach:

• Learning image and text joint embedding space.

• Visual grounding relying on the spatial-textual information 

modeling.

• Cross-modal retrieval leveraging the semantic space and 

the visual and textual alignment.

Cross-modal retrieval:

Query:  A cat 

on a sofa

R@1 R@5 R@10 R@1 R@5 R@10

Caption retrieval Image retrieval

2-Way Net [5] 55.80% 75.20% 39.70% 63.30%

VSE++ [6] 64.60% 95.70% 52% 92%

Ours 69.80% 91.90% 96.60% 55.90% 86.90% 94%
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Cross-modal retrieval results

"Center" baseline 19.50%

Linguistic structure [7] 24.40%

Ours 33.80%
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Pointing game results

Visual pipeline:

• ResNet-152 [1] pretrained.

• Weldon [2] spatial pooling.

• Affine projection and normalization.

Textual pipeline:

• Pretrained word embedding [3].

• Simple Recurrent Unit (SRU) [4].

• Normalization.

Visual grounding module:

• Weakly supervised, with no additional

training. 

• Using the embedding space to select 

convolutionnal activation maps.

Performance boost coming from:

• Architecture choice: SRU and Weldon spatial 

pooling.

• Efficient learning strategy: hard negative loss.
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𝐵


𝑛∈𝐵

max
𝑚∈𝐶𝑛∩𝐵

loss 𝐱𝑛, 𝐯𝑛, 𝐯𝑚

+ max
𝑚∈𝐷𝑛∩𝐵

loss 𝐯𝑛, 𝐱𝑛, 𝐱𝑚

𝐖𝐢𝐭𝐡 :
• ሽloss(𝐲, 𝐳, 𝐳′) = ma x{ 0, α− < 𝐲, 𝐳 > + < 𝐲, 𝐳′ >
• 𝐶𝑛 (resp. 𝐷𝑛) set of indices of caption (resp. image) unrelated to n-th

element.

Loss for a batch ℬ = { 𝐈𝑛, 𝐒𝑛 ሽ𝑛∈𝐵 of image sentence pairs: 

The pointing game: Localizing phrases 

corresponding to subregions of the image. 

Cross-modal retrieval: Evaluated on 

MS-CoCo image/caption pairs.
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Generation of heatmap 𝐇: 

ሿ𝐆′ 𝑖, 𝑗, : = 𝐴𝐆 𝑖, 𝑗, : , ∀ 𝑖, 𝑗 ∈ [1,𝑤ሿ × [1, ℎ

𝐇 = 

𝑢∈𝐾 𝐯

ሿ𝐯 𝑢 ∗ 𝐆′[: , : , 𝑢

𝐾 𝐯 the set of the indices of its k largest entries
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Sensitivity to adversarial attacks
Finding adversarial example:

Optimizing noise r over input image 𝐈 resulting in its representation 𝐹 𝐈 + 𝐫; 𝜃0: 2 being

displaced toward 𝐲 in the embedding space. 

Visual grounding examples:

• Generating multiple heat maps with different

textual queries.

Localization

ResNet conv pool
affine+
norm.

(a, man, in, ski, gear,
skiing, on, snow)

w2v SRU+norm

cosine
sim.

𝜃0: 2 and ϕ are the trained parameters

Toward zero-shot localization: 

• Emergence of colors understanding:

• Generalization to unseen elements:

• Even on artificial images:

R@1 R@5 R@10 R@1 R@5 R@10

Caption retrieval Image retrieval

Hard Neg + WLD + SRU 4 69.80% 91.90% 96.60% 55.90% 86.90% 94%

Hard Neg + GAP + SRU 4 64.50% 90.20% 95.50% 51.20% 84.00% 92.00%

Hard Neg + WLD + GRU 1 63.80% 90.20% 96% 52.20% 84.90% 92.60%

Classic + WLD + SRU 4 49.50% 81% 90.10% 39.60% 77.30% 89.10%
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Ablation study: cross modal retrieval results

max
𝐫

< 𝐹 𝐈 + 𝐫 ; 𝜃 0 : 2 , 𝐲 > s . t 𝐫 2 ≤ 𝛆

Semantic Embedding Model

I

𝐈 + 𝐫

Original image:

Adversarial Image:

Type of attack:

Sheep

Plane

Standard

Plane

Sheep

Targeted

Elephant

Carriage

Universal targeted

Closest

word in the 

embedding

overlaid in 

white.

Examples of adversarial attacks


