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Abstract

The performance of modern object detectors drops when
the test distribution differs from the training one. Most of
the methods that address this focus on object appearance
changes caused by, e.g., different illumination conditions,
or gaps between synthetic and real images. Here, by con-
trast, we tackle geometric shifts emerging from variations in
the image capture process, or due to the constraints of the
environment causing differences in the apparent geometry
of the content itself. We introduce a self-training approach
that learns a set of geometric transformations to minimize
these shifts without leveraging any labeled data in the new
domain, nor any information about the cameras. We evalu-
ate our method on two different shifts, i.e., a camera’s field
of view (FoV) change and a viewpoint change. Our results
evidence that learning geometric transformations helps de-
tectors to perform better in the target domains.

1. Introduction
While modern object detectors [1, 2, 17, 23, 24] achieve

impressive results, their performance decreases when the
test data depart from the training distribution. This prob-
lem arises in the presence of appearance variations due to,
for example, differing illumination or weather conditions.
Considering the difficulty and cost of acquiring annotated
data in the test (i.e., target) domain, Unsupervised Domain
Adaptation (UDA) has emerged as the standard strategy to
address such scenarios [3, 4, 9, 26, 38].

In this context, much effort has been made to learn do-
main invariant features, such that the source and target dis-
tributions in this feature space are similar. This has led to
great progress in situations where the appearance of the ob-
jects changes drastically from one domain to the other, as
in case of real-to-sketch adaptation (e.g., Pascal VOC [10]
to Comics [15]), or weather adaptation (e.g., Cityscapes [6]
to Foggy Cityscapes [27]). Nevertheless, such object ap-
pearance changes are not the only sources of domain shifts.
They can also have geometric origins. For example, as
shown in Fig. 1, they can be due to a change in camera view-

Figure 1. Geometric shifts. (Left) Due to a different FoV,
the cars highlighted in green, undergo different distortions even
though they appear in similar image regions. (Right) Different
camera viewpoints (front facing vs downward facing) yield dif-
ferent distortions and occlusion patterns for pedestrian detection.
(Bottom) The distributions of pedestrian bounding box sizes in
Cityscapes [6] and MOT [8] differ significantly as the pedestrians
are usually far away or in the periphery in Cityscapes. The top im-
ages are taken from Cityscapes [6], and the bottom-left and right
ones from KITTI [12] and MOT [8], respectively.

point or field-of-view (FoV), or a change of object scale due
to different scene setups. In practice, such geometric shifts
typically arise from a combination of various factors, in-
cluding but not limited to the ones mentioned above.

In this paper, we introduce a domain adaptation approach
tackling such geometric shifts. To the best of our knowl-
edge, the recent work of [13] constitutes the only attempt at
considering such geometric distortions. However, it intro-
duces a method solely dedicated to FoV variations, assum-
ing that the target FoV is fixed and known. Here, we de-



velop a more general framework able to cope with a much
broader family of geometric shifts.

To this end, we model geometric transformations as a
combination of multiple homographies. We show both the-
oretically and empirically that this representation is suffi-
cient to encompass a broad variety of complex geometric
transformations. We then design an aggregator block that
can be incorporated to the detector to provide it with the
capacity to tackle geometric shifts. We use this modified
detector to generate pseudo labels for the target domain,
which let us optimize the homographies so as to reduce the
geometric shift.

Our contributions can be summarized as follows. (i)
We tackle the problem of general geometric shifts for ob-
ject detection. (ii) We learn a set of homographies using
unlabeled target data, which alleviates the geometric bias
arising in source-only training. (iii) Our method does not
require prior information about the target geometric distor-
tions and generalizes to a broad class of geometric shifts.
Our experiments demonstrate the benefits of our approach
in several scenarios. In the presence of FoV shifts, our
approach yields similar performance to the FoV-dedicated
framework of [13] but without requiring any camera infor-
mation. As such, it generalizes better to other FoVs. Fur-
thermore, we show the generality of our method by using
it to adapt to a new camera viewpoint in the context of
pedestrian detection.Our implementation can be accessed at
https://github.com/vidit09/geoshift.

2. Related Work
Unsupervised Domain Adaptation (UDA). UDA for
image recognition [11, 21, 22, 30, 32, 35, 36] and object de-
tection [3, 4, 9, 20, 26, 38] has made a great progress in the
past few years. The common trend in both tasks consists
of learning domain invariant features. For object detection,
this entails aligning the global (e.g., illumination, weather)
and local (foreground objects) features in the two domains.
In this context, [3, 5, 26,28] align image- and instance-level
features in the two domains via adversarial learning [11];
[33] learns category-specific attention maps to better align
specific image regions; [38] clusters the proposed object re-
gions using k-means clustering and uses the centroids for
instance-level alignment. While this successfully tackles
domain shifts caused by object appearance variations, it
fails to account for the presence of shifts due to the image
capture process itself, such as changes in camera intrinsics
or viewpoint. The only initial step at considering a geo-
metric shift is the work of [13], which shows the existence
of an FoV gap in driving datasets [6, 12] and proposes a
Position Invariant Transform (PIT) that corrects the distor-
tions caused specifically by an FoV change. In essence, PIT
undistorts the images by assuming knowledge of the target
FoV. By contrast, here, we introduce an approach that gen-

eralizes to a broad family of geometric shifts by learning
transformations without requiring any camera information.

Self-training. Self-training, generally employed in the
semi-supervised setting, offers an alternative to learning
domain-invariant features and utilize unlabeled data to im-
prove a detector’s performance. In this context, [29] uses
a student-teacher architecture where the teacher model is
trained with supervised data and generates pseudo-labels
on unannotated data. These pseudo-labels are then used
to train a student model. While effective in the stan-
dard semi-supervised learning scenario, the quality of the
pseudo-labels obtained with this approach tends to deteri-
orate when the labeled and unlabeled data present a distri-
bution shift. [9, 20] have therefore extended this approach
to domain adaptation by using the Mean Teacher strategy
of [31] to generate reliable pseudo-labels in the target do-
main. Other approach include the use of CycleGAN [37]
generated images to train an unbiased teacher model [9],
and that of different augmentation strategies to generate ro-
bust pseudo-labels [20]. Our approach also follows a self-
training strategy but, while these works focus on object ap-
pearance shifts, we incorporate learnable blocks to address
geometric shifts. As shown in our experiment, this lets us
outperform the state-of-the-art AdaptTeacher [20].

Learning Geometric Transformations. End-to-end
learning of geometric transformations has been used to
boost the performance of deep networks. For example,
Spatial Transformer Networks (STNs) [16] reduce the
classification error by learning to correct for affine trans-
formations; deformable convolutions [7] model geometric
transformations by applying the convolution kernels to
non-local neighborhoods. These methods work well when
annotations are available for supervision, and make the
network invariant to the specific geometric transformations
seen during training. Here, by contrast, we seek to learn
transformations in an unsupervised manner and allow the
network to generalize to unknown target transformations.

3. Modeling Geometric Transformations
In the context of UDA, multiple geometric differences

can be responsible for the gap between the domains. Some
can be characterized by the camera parameters, such as a
change in FoV (intrinsic) or viewpoint (extrinsic), whereas
others are content specific, such as a difference in road
width between different countries. Ultimately, the geomet-
ric shift is typically a combination of different geometric
operations. Since the parameters of these operations are un-
known, we propose to bridge the domain gap by learning a
geometric transform. Specifically, we aggregate the results
of multiple perspective transforms, i.e., homographies, to
obtain a differentiable operation that can emulate a wide
variety of geometric transforms.

https://github.com/vidit09/geoshift


3.1. Theoretical Model

Let us first show that, given sufficiently many homogra-
phies, one can perfectly reproduce any mapping between
R2 \ (0, 0) and R2.

Single homography for a single point. First, we show
that a single homography with 4 degrees of freedom can
map a point p ∈ R2 \ (0, 0) to any other point in R2. To this
end, let

H =

sx 0 0
0 sy 0
lx ly 1

 (1)

be a homography, with (sx, sy) the scaling factors on the x-
and y-axis, respectively, and (lx, ly) the perspective factors
in x and y, respectively. For any destination point d ∈ R2,
there exists a set of parameters (sx, sy, lx, ly) such that d =

H × p. One such set is (dx

px
,
dy

py
, 0, 0).

Emulating any geometric transformation Now that we
have shown that a single homography can move a point to
any other point in R2, we describe a simple protocol to emu-
late any geometric transform. Given an unknown geometric
transform T : R2\(0, 0)→ R2, we aim to emulate T with a
set of homographies. In general, for an image I ∈ R3×h×w,
we can restrict the domain of T to only image coordinates.
To this end, we can define a set of homographies Hi ∈ H
for i in {1, 2, 3, ..., h× w}, where the parameters of Hi are
chosen to mimic the transform T for location i of the image.
In this protocol, the aggregation mechanism is trivial since
each homography is in charge of remapping a single pixel
coordinate of the original space.

While this works in theory, this is of course not viable
in practice since it would require too many homographies.
With a smaller number of homographies, each transform
needs to remap multiple points, and a more sophisticated
aggregation mechanism is required. Specifically, the ag-
gregation mechanism needs to select which transform is in
charge of remapping which point. In the next section, we
empirically show that this strategy lets us closely approxi-
mate the spherical projection mapping used in PIT [13].

3.2. Approximating PIT with Homographies

To demonstrate the possibility offered by aggregating
multiple homographies, we design an approximation of PIT
using only homographies. PIT proposes to correct for an
FoV gap by remapping images to a spherical surface. Dur-
ing this transformation, regions further from the center of
a scene are compressed with a higher ratio. This variable
compression of the space cannot be reproduced by a single
homography transformation. To overcome this limitation,
we combine the results of multiple homographies that all
have different compression rates (scaling parameters). For

the aggregation mechanism, we use the optimal strategy by
selecting for each pixel the homography that approximates
best the PIT mapping. As shown in Fig. 2, this combination
closely approximates the PIT results with only 5 homogra-
phies. Further analysis of these experiments is available in
the supplementary material in Fig. A.3.

Figure 2. Approximating PIT with homographies. We show the
original image (top), the PIT [13] correction (middle), and our ap-
proximation of PIT using 5 homographies. Note that 5 homogra-
phies are sufficient to closely match the PIT spherical correction.

3.3. Homographies in a Learning Setup

In the two previous sections, we have demonstrated both
theoretically and empirically the flexibility of aggregating
homographies. This makes this representation an ideal can-
didate for domain adaptation since the geometric shift be-
tween the domains is unknown and can be a combination
of different transforms, such as FoV change, viewpoint
change, camera distortion, or appearance distortion. As will
be discussed in the next section, by learning jointly the set
of perspective transforms and the aggregation mechanism
on real data, our model can reduce the geometric shift be-
tween the two domains without prior knowledge about this
domain gap.

4. Method
Let us now introduce our approach to reducing the ge-

ometric shift in object detection. Following the standard
UDA setting, let Ds = {(Is, Bs, Cs)} be a labeled source
dataset containing images Is = {Iis}

Ns
1 with correspond-

ing object bounding boxes Bs = {bis}
Ns
1 and object classes

Cs = {cis}
Ns
1 . Furthermore, let Dt = {It} denote an un-

labeled target dataset for which only images It = {Iit}
Nt
1



Figure 3. Architecture: The input image is first transformed by a set of trainable homographies. The feature maps extracted from
the transformed images are then unwarped by the inverse homographies to achieve spatial consistency. We then combine the unwarped
feature maps using a trainable aggregator, whose output is passed to a detection head. The blocks shown in green correspond to standard
FasterRCNN operations. The ⊕ symbol represents the concatenation operation.

are available, without annotations. Here, we tackle the case
where the two domains differ by geometric shifts but as-
sume no knowledge about the nature of these shifts. Below,
we first introduce the architecture we developed to handle
this and then our strategy to train this model.

4.1. Model Architecture

The overall architecture of our approach is depicted in
Fig. 3. In essence, and as discussed in Sec. 3, we charac-
terize the geometric changes between the source and target
data by a set of transformations T = {Hi}N1 . Each Hi in
T is a homography of the same form as in Eq. (1). For our
method to remain general, we assume the transformations to
be unknown, and our goal, therefore, is to learn T to bridge
the gap between the domains. This requires differentiabil-
ity w.r.t. the transformation parameters, which we achieve
using the sampling strategy proposed in [16].

As shown in Fig. 3, the input image is transformed by the
individual homographies in T , and the transformed images
are fed to a modified FasterRCNN [24] detector. Specif-
ically, we extract a feature map FHi ∈ RH×W×C for
each transformed image via a feature extractor shared by
all transformations. To enforce spatial correspondence be-
tween the different FHi

s, we unwarp them withH−1
i .

We then introduce an aggregator Aθg , parameterized by
θg , whose goal is to learn a common representation given
a fixed number of unwarped feature maps F ′

Hi
. To achieve

this, the aggregator takes as input

G = F ′
H1
⊕F ′

H2
⊕ ...⊕F ′

HN
∈ RH×W×C×N , (2)

where⊕ represents concatenation in the channel dimension.
The aggregator outputs a feature mapAθg (G) ∈ RH×W×C ,
whose dimension is independent of the number of transfor-
mations. This output is then passed to a detection head to
obtain the objects’ bounding boxes and class labels.

4.2. Model Training

Our training procedure relies on three steps: (i) Fol-
lowing common practice in UDA, we first train the Faster-
RCNN detector with source-only data; (ii) We then intro-
duce the aggregator and train it so that it learns to com-
bine different homographies using the labeled source data;
(iii) Finally, we learn the optimal transformations for adap-
tation using both the source and target data via a Mean
Teacher [31] strategy.

Aggregator Training. To train the aggregator, we ran-
domly sample a set of homographies T ∈ RN×4 in each
training iteration.1 This gives the aggregator the ability to
robustly combine diverse input transformations but requires
strong supervision to avoid training instabilities. We, there-
fore, perform this step using the source data.

The loss function for a set of transformed images T (Is)
is then defined as in standard FasterRCNN training with
a combination of classification and regression terms [24].
That is, we train the aggregator by solving

min
θg
Lcls(T (Is)) + Lreg(T (Is)) , (3)

1As our homographies involve only 4 parameters, with a slight abuse
of notation, we say that Hi ∈ R4.



where

Lcls(T (Is)) = Lrpn
cls + Lroi

cls , (4)

Lreg(T (Is)) = Lrpn
reg + Lroi

reg . (5)

Lrpn
· and Lroi

· correspond to the Region Proposal Network
(RPN) loss terms and the Region of Interest (RoI) ones, re-
spectively. During this process, we freeze the parameters
θb of the base network, i.e, feature extractor and detection
head, which were first trained on the source data without ag-
gregator. Ultimately, the aggregator provides the network
with the capacity to encode different transformations that
are not seen in the source domain. The third training step
then aims to learn the best transformation for successful ob-
ject detection in the target domain.

Learning the Transformations. As we have no annota-
tions in the target domain, we exploit a Mean Teacher (MT)
strategy to learn the optimal transformations. To this end,
our starting point is the detector with a trained aggregator
and a set of random transformations T . The MT strategy is
illustrated in Fig. 4. In essence, MT training [31] involves
two copies of the model: A student model, with parameters
θst = {T st, θstb , θstg }, that will be used during inference,
and a teacher model, with parameters θte = {T te, θteb , θteg },
that is updated as an Exponentially Moving Average (EMA)
of the student model. That is, the student’s parameters
are computed with standard backpropagation, whereas the
teacher’s ones are updated as

θte ← αθte + (1− α)θst . (6)

The student model is trained using both source and tar-
get detection losses. Since the target domain does not have
annotations, the teacher model is used to generate pseudo-
labels. These labels might be noisy, and hence we only keep
the predictions with a confidence score above a threshold τ .
Furthermore, non-maxima suppression (NMS) is used to re-
move the highly-overlapping bounding box predictions.

Formally, given a source image Is and a target image It,
the student model is trained by solving

min
T st,θst

g ,θst
b

Ldet(T (Is)) + λLdet(T (It)) , (7)

where λ controls the target domain contribution and

Ldet(T (Is)) = Lcls(T (Is)) + Lreg(T (Is)) , (8)
Ldet(T (It)) = Lcls(T (It)) . (9)

Similarly to [18,20], we update the student model with only
the classification loss in the target domain to help stabilize
training.

Figure 4. Mean Teacher formalism. The student model is trained
with ground-truth labels in the source domain and pseudo labels in
the target one. These pseudo labels are produced by the teacher
model, which corresponds to an exponentially moving average
(EMA) of the student network.

5. Experiments
We demonstrate the effectiveness and generality of our

method on different geometric shifts. First, to compare to
the only other work that modeled a geometric shift [13],
we tackle the problem of a change in FoV between the
source and target domain. Note that, in contrast to [13], we
do not assume knowledge of the target FoV. Furthermore,
while [13] was dedicated to FoV adaptation, our approach
generalizes to other geometric shifts. We demonstrate this
on the task of pedestrian detection under a viewpoint shift.
We compare our method with the state-of-the-art Adapt-
Teacher [20], which also uses a Mean Teacher, but focuses
on appearance shifts. In the remainder of this section, we
describe our experimental setup and discuss our results.

5.1. Datasets

Cityscapes [6] contains 2975 training and 500 test im-
ages with annotations provided for 8 categories (person,
car, train, rider, truck, motorcycle, bicycle and bus). The
average horizontal (FoVx) and vertical (FoVy) FoVs of the
capturing cameras are 50°and 26°, respectively. We use this
dataset as the source domain for both FoV adaptation and
viewpoint adaptation.

KITTI [12] is also a street-view dataset containing 6684
images annotated with the car category. The horizontal
(FoVx) and vertical (FoVy) FoVs of the camera are 90°and
34°, respectively. We use this dataset as target domain
for FoV adaptation, as the viewpoint is similar to that of
Cityscapes. Following [13], we use 5684 images for unsu-
pervised training and 1000 images for evaluation.

MOT [8] is a multi-object tracking dataset. We use the in-
door mall sequence, MOT20-02, consisting of 2782 frames
annotated with the person category. We employ this dataset
as target domain for viewpoint adaptation. We use the first



2000 frame for unsupervised training and last 782 for eval-
uation.

5.2. Adaptation Tasks and Metric

FoV adaptation. As in [13], we consider the case of
an increasing FoV using Cityscapes as source domain and
KITTI as target domain. The horizontal and vertical FoVs
increase from (50°, 26°) in Cityscapes to (90°, 34°) in
KITTI. Therefore, as can be seen in Fig. 1, the KITTI
images have a higher distortion in the corners than the
Cityscapes ones. Similarly to PIT [13], we use the car cat-
egory in our experiments.

FoV generalization. Following PIT [13], we study the
generalization of our approach to new FoVs by cropping
the KITTI images to mimic different FoV changes in the
horizontal direction (FoVx). Specifically, we treat FoVx =
50° as the source domain and the cropped images with FoVx
= {70°, 80°, 90°} as different target domains. We evaluate
our approach on car on these different pairs of domains.

Viewpoint adaptation. This task entails detecting objects
seen from a different viewpoint in the source and target do-
mains. We use the front-facing Cityscapes images as source
domain and the downward-facing MOT ones as target one.
As the MOT data depicts pedestrians, we use the bounding
boxes corresponding to the person category in Cityscapes.2

Metric. In all of our experiments, we use the Average Pre-
cision (AP) as our metric. Specifically, following [13], we
report the AP@0.5, which considers the predictions as true
positives if they match the ground-truth label and have an
intersection over union (IOU) score of more than 0.5 with
the ground-truth bounding boxes.

5.3. Implementation Details

We use the Detectron2 [34] implementation of Faster-
RCNN [24] with a ResNet50 [14] backbone as our base
architecture. In all of our experiments, the images are re-
sized so that the shorter side has 800 pixels while maintain-
ing the aspect ratio. The base network is first trained on
source-only images with random cropping and random flip-
ping augmentation for 24k iterations with batch size 8. We
use the Stochastic Gradient Descent (SGD) optimizer with
a learning rate of 0.01, scaled down by a 0.1 factor after
18k iterations. We use ImageNet [25] pretrained weights to
initialize the ResNet50 backbone.

We then incorporate the aggregator in the trained base
architecture. The aggregator architecture contains three
convolutional layers with a kernel size of 3 × 3, and one
1 × 1 convolutional layer. We first train the aggregator

2In Cityscapes, a person may be labeled as either person or rider. Since
the rider label is used for people riding a vehicle, we omit these cases.

Figure 5. FoV Adaptation: Qualitative Results. We visualize
a car detection result in the Cityscapes-to-KITTI FoV adaptation
scenario. The top left image corresponds to the ground truth, the
bottom left to the Mean Teacher result, which confuses the orange
container with a car, the bottom right to the Mean Teacher adapta-
tion + PIT FoV adaptation result, which also mistakes the orange
container for a car and further detects the speed limit on the road.
Our approach, on the top right, correctly matches the ground truth.

on the source data with the base frozen and using ran-
dom transformations T . The transformations are gener-
ated by randomly sampling eachHi parameters as sx, sy ∼
U[0.5,2.0],U[0.5,2.0] and lx, ly ∼ U[−0.5,0.5],U[−0.5,0.5]. We
train the aggregator for 30k iterations using a batch size of
8 and the SGD optimizer with a learning rate of 1e−4.

The student and teacher models are then initialized with
this detector and the random T = {Hi}Ni=1. We optimize T
using Adam [19], while the base and aggregator networks
are optimized by SGD. The learning rate is set to 1e−3 and
scaled down by a factor 0.1 after 10k iterations for the SGD
optimizer. For the first 10k iterations in FoV adaptation and
for 2k iterations for viewpoint adaptation, we only train T
keeping base and aggregator frozen. The α coefficient for
the EMA update is set to 0.99; the confidence threshold
τ = 0.6; λ = {0.01, 0.1} for FoV and viewpoint adapta-
tion, respectively. The Mean Teacher framework is trained
using both the source and target data. We set N = 5, unless
otherwise specified, and use a batch size of 4, containing 2
source and 2 target images. We apply random color jitter-
ing on both the source and target data as in [20, 31]. All
of our models are trained on a single NVIDIA V100 GPU.
A detailed hyper-parameter study is provided in the supple-
mentary material.

5.4. Comparison with the State of the Art

We compare our approach with the following baselines3.
FR: FasterRCNN trained only on the source data with
random crop augmentation; AT: AdaptTeacher [20]; MT:
Mean Teacher initialized with FR and trained with ran-
dom color jittering on both the source and target data (i.e.,
this corresponds to our mean teacher setup in Sec. 4.2
but without the aggregator and without transformations T );
FR+PIT: Same setup as FR but with the images corrected
with PIT [13]; MT+PIT: Same setup as MT but with the

3We re-implement PIT baselines with our detector.



Method Car AP@0.5

FR [24] 76.1
AT [20] 77.2
FR+PIT 77.6
MT 78.3
MT+PIT [13] 79.7
Ours 80.4 ± 0.15

Table 1. FoV Adaptation.

Car AP@0.5 for FoVx

Method 50° 70° 80° 90°

FR [24] 94.3 90.2 86.8 80.6
FR+PIT [13] 93.6 91.4 89.2 85.9
Ours-h 94.1± 0.16 93.1 ± 0.33 91.8 ± 0.40 88.8 ± 0.21

Table 2. FoV Generalization.

images corrected with PIT. We refer to our complete ap-
proach (Sec. 4.2) as Ours. For the task of FoV generaliza-
tion, we report our results as Ours-h to indicate that we only
optimize the homographies (5×4 parameters) in T to adapt
to the new FoVs while keeping the base and aggregator net-
works frozen. This matches the setup of PIT [13], which
also corrects the images according to the new FoVs. As
Ours and Ours-h are trained with randomly initialized T ,
we report the average results and standard deviations over
three independent runs.

FoV adaptation. The results of Cityscapes→KITTI FoV
adaptation are provided in Tab. 1. Both MT+PIT and Ours
both bridge the FoV gap, outperforming the MT baseline.
Note, however, that we achieve this by learning the trans-
formations, without requiring any camera-specific informa-
tion, which is needed by PIT. Note also that MT outper-
forms FR by learning a better representation in the target do-
main, even though FR is trained with strong augmentation,
such as random cropping. AT underperforms because its
strong augmentation strategy fails to generalize for datasets
having prominent geometric shifts. Our improvement over
MT evidences that learning transformations helps to over-
come geometric shifts. We optimize with N = 9, homo-
graphies in this setup. Fig. 5 shows a qualitative example.
Different homographies look into different image regions
and the aggregator learns how to combine the activations
corresponding to objects as depicted in Fig. 7. In supp.
material Sec. A.3, we show effectiveness of a learned ag-
gregator over the others. Additionally, we provide results
on FoV decreasing adaptation in supp. material Sec. A.5.

FoV generalization. Tab. 2 summarizes the results ob-
tained by using different FoVs as target domains while fix-

Method Pedestrian AP@0.5

FR [24] 43.7
AT [20] 63.5
MT 64.7
Ours 65.3± 0.37

Table 3. Viewpoint Adaptation.

Figure 6. Varying the number of homographies. We evaluate
the effect of N on the FoV adaptation task.

ing the source FoV to 50°. Since both the source and tar-
get images are taken from KITTI, the domain gap is only
caused by a FoV change. Note that the performance of
FR drops quickly as the FoV gap increases. Ours-h out-
performs FR+PIT by a growing margin as the FoV gap in-
creases. This shows that learning transformations helps to
generalize better to different amounts of geometric shifts.

Viewpoint adaptation. As shown in Fig. 1, a change in
the camera viewpoint yields differences in the observed dis-
tortions and type of occlusions. The results in Tab. 3 show
the benefits of our method over MT in this case. Note that
PIT, which was designed for FoV changes, cannot be ap-
plied to correct for a viewpoint change. Other baselines out-
perform FR, as they use pseudo labels to fix the difference
in bounding box distribution, as shown in Fig. 1. These
results illustrate the generality of our method to different
kinds of geometric shifts. Qualitative results for this task
can be found in Fig. A.10.

5.5. Additional Analyses

Variable number of homographies. Let us now study
the influence of the number of homographies in T . To this
end, we vary this number between 1 and 9. In Fig. 6, we plot
the resulting APs for the Cityscapes-to-KITTI FoV adap-
tation task. Increasing the number of transformations re-
sults in a steady increase in performance, which nonetheless
tends to plateau starting at 4 homographies. This is similar
to our theoretical observation in Fig. A.3 of supp. mate-
rial. Due to limited compute resources, we couldn’t run ex-



Figure 7. Feature Maps: Top row: predictions of our network and
feature map after aggregator. Left column: Image I, transformed
by learned homographies; Right Column: Feature maps F warped
by corresponding H−1 which are input to the aggregator. Each
transform distorts the image regions differently. Most of the cars
are on the left side and of small size in the image. H1 distorts
the left side leading to no activation(H−1

1 F1) for the object. H3

which causes the zoom-in effect has the strongest activation as the
smaller objects are visible better here. These maps are generated
by taking maximum over channel dimension.

periments with more than 9 homographies. This confirms
the intuition that a higher number of perspective transfor-
mations can better capture the geometric shift between two
domains. Therefore, we conducted all experiments with the
maximum number of homographies allowed by our com-
pute resources.

Only optimizing T . We also run the Ours-h baseline in
the FoV and viewpoint adaptation scenarios. The result-
ing APs are 78.2 and 49.8, respectively. By learning only
the 20 (5 × 4) homography parameters, our approach out-
performs FR (in Tab. 1 and Tab. 3, respectively) by a large
margin in both cases. This confirms that our training strat-
egy is able to efficiently optimize T to bridge the geometric
gap between different domains. We visualize in Fig. A.9 in
the supplementary material some transformations learned
for FoV adaptation by Ours-h. Note that they converge to
diverse homographies that mimic a different FoV, correctly
reflecting the adaptation task. Additionally in supp. mate-
rial Sec. A.4, we ablate why the learning transform is useful.
Specifically, learning not only provide better performance
but provide faster inference w.r.t random transformations.

Diversity in T . To show that our approach can learn a
diverse set of transformations that help in the adaptation
task, we initialize all the homographies with identity. Fig. 8
depicts the diversity of the learned homographies on the
FoV adaptation task. Even though we do not enforce di-

Figure 8. Diversity in T : We train 5 homographies initialized as
Hi = I . We plot the evolution of sx for different homograhies
as training proceeds. Each homography is shown in a different
color. Note that the values for the different homographies become
diverse. The best score is achieved at iteration = 22k, indicated
with the vertical line.

versity, our approach learns a diverse set of transformations.
With these learned homorgraphies, our model achieves 79.5
AP@0.5 score for the FoV adaptation task. We show
additional results in the supplementary material Sec. A.6
and Sec. A.7.

Limitations. Our approach assumes that the geometric
gap between two domains can be bridged by a set of per-
spective transformations. We have shown that with enough
transformations this is true. However, using a large num-
ber of homographies comes at a computational cost. The
computational overhead leads to an increment in the infer-
ence time from 0.062s to 0.096s for N = 5 on an A100
Nvidia GPU with image dimension 402× 1333. Neverthe-
less, our simple implementation shows promising results,
and we will work on reducing this overhead in future work.
Moreover since the optimization of the homography set is
done at the dataset level, only certain transformations are
beneficial to a given image. In the future, we therefore in-
tend to condition the homography on the input image, which
would reduce the total number of homographies needed.

6. Conclusion
We have introduced an approach to bridge the gap be-

tween two domains caused by geometric shifts by learning
a set of homographies. We have shown the effectiveness our
method on two different kinds of shifts, without relying on
any annotations in the target domain, including information
about the nature of the geometric shifts. Our analyses have
evidenced that optimizing the transformations alone brings
in improvement over the base detector and increasing the
number of learnt homographies helps further. In the future,
we plan to learn transformations that are conditioned on the
input image to model image-dependent geometric shifts.
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