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1.1 Context

In today’s society, Artificial Intelligence (AI) is ubiquitous. It is both used to completely

automate low-level tasks like robotic industrial applications, as well as to provide

assistance for higher-level tasks such as collision detection or health diagnosis. With

a steady interest in AI, today’s research aims at automating more and more these

high-level tasks.

A huge part of this automation relies on the ability of AI agents to perceive, under-

stand and reason on their environment. Computer vision focuses on this particular

problem for the visual domain. While cameras produce very precise representation,

often more accurate than the human eye, reducing these pixel representations from a

large dimensional space to a high-level representation is a challenge.

Since 2012 and the breakthrough of deep learning on the ImageNet classification

challenge, deep neural networks settled as the new standard for image representa-

tion. With the increasing amount of research brought by this breakthrough, further

improvement on object detection and semantic segmentation quickly followed. This im-
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provement of image representation also served as a starting point for more challenging

applications involving semantic and reasoning such as image captioning, multimodal

retrieval or visual question answering.

This progress was also backed up by the growth of the internet and the large amount

of data created and uploaded online every day. Sorting this amount of data requires

automated processes. It is also an opportunity to collect large quantity of data needed

to train larger and larger machine learning models.

1.2 Computer vision, image and video understanding

With the goal of improving image and video understanding, the computer vision field

is using increasingly difficult proxy tasks to challenge itself. Solving these tasks pushes

forward visual representation.

In the past two decades tremendous progress has been made. Object recognition

is one of the tasks that helped the computer vision field grow. It aims at identifying

objects in an image. The main difficulty of this task lies in the diversity of objects. They

vary in scales, shapes, and colors depending on the illumination and the viewpoint of

the scene. For a given object, for example a chair, multiple types of chairs exist with

large variations in their appearance. Creating a model able to generalize and detect

any type of chairs requires to have a semantic understanding of the concept of chair

i.e. an object, you can sit on. However since the only goal of classification is to classify

an image for the presence or absence of an object it is possible to mostly rely on context

and textures instead of truly grasping the concept behind the object. A wooden object

in the living room is more likely to be a chair than a car; nonetheless we would like to

be able to detect a car even if it is in the middle of a living room.

Nevertheless promising results were obtained on the classification task and the field

moved toward more challenging tasks, extending simple classification with localization.

For example, the goal of object detection is to detect and localize an object with a

bounding box. Finer localization was also tackled trying to segment the object or even
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its instance. Focusing on localization tasks helped improve visual representation with

the need to capture high-level concepts while preserving low-level accuracy (pixel-wise).

1.3 Extending computer vision using semantic

With the growing performance of models on pure computer vision tasks and a first

glimpse of their ability to capture semantics, it is a natural next step to strengthen the

connection between the visual and semantic domains. This can be done by bridging the

gap between visual and natural language tasks. The most direct example of such a task

would be captioning, which aims at producing a short textual description corresponding

to a given visual scene. In that form the textual caption can be seen as a high-level

representation of the image, using natural language as representation encoding. The

production of such captions requires a high understanding of the visual modality,

including the detection of the objects in the scene, their attributes, and their relations

with each other.

Another task connecting the visual and textual modality is Visual Question An-

swering (VQA), its goal is to answer any natural language question about any type

of images. It requires high-level understanding of both visual and textual modality

as well as advanced reasoning. Answering a question might require multiple steps of

reasoning each involving different parts of the image as well as high-level concepts,

object relationship and even common sense.

Lastly, and the approach of interest in this thesis, we will focus our attention on

joint semantic and visual representation. With the availability of multimodal data, it is

now possible to directly align the visual domain with the semantic domain. Given a

set of visual data where each image is paired to a caption describing its content, joint

semantic and visual representation aims at creating a common representation space,

where images and texts are comparable. Using the properties of such space to measure

similarity between elements of different modalities open up multimodal retrieval: using

a natural language query describing a scene to retrieve the picture of the corresponding

scene from a large database. While retrieval is the most obvious application using joint

multimodal space, it can also serve as a basis for any application requiring visual and
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semantic information such as captioning, visual grounding of text, textual guided image

generation, object relationship detection.

1.4 Contribution

In this thesis, we aim to further advance image representation and understanding.

Revolving around Visual Semantic Embedding (VSE) approaches, we explore different

directions: First, we present relevant background in Chapter 2, covering images and

textual representation and existing multimodal approaches. Then in Chapter 3 we

propose novel architectures further improving retrieval capability of VSE. In Chapter 4

we extend VSE models to novel applications and leverage embedding models to visually

ground semantic concept. Finally, in Chapter 5 we delve into the learning process and

in particular the loss function.

This thesis is based on the work published in the following articles:

• Martin Engilberge, Louis Chevallier, Patrick Pérez, and Matthieu Cord. “Finding

beans in burgers: Deep semantic-visual embedding with localization.” In: Pro-

ceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018,

pp. 3984–3993

• Martin Engilberge, Louis Chevallier, Patrick Pérez, and Matthieu Cord. “SoDeep:

a Sorting Deep net to learn ranking loss surrogates.” In: Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition. 2019, pp. 10792–10801

• Martin Engilberge, Louis Chevallier, Patrick Pérez, and Matthieu Cord. “Semantic-

Visual Embedding with Distributed Self-Attention.” In: arXiv preprint. 2020

1.5 Industrial context

This thesis has been completed within Technicolor and Interdigital. Technicolor is

a French corporation that provides services and products for the communication,

media and entertainment industries. Interdigital is a mobile technology research and

development company which acquired Technicolor Research & Innovation Activity in

2019.
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In the context of movie production, a tremendous amount of multimedia content is

produced daily. One motivation behind this thesis is being able to process this content

so it can be easily retrieved later. An effective retrieval system requires a fine-grained

visual representation capturing discriminative features, it also needs to be intuitive

to use. Recent Deep Learning systems based on visual-semantic embedding combine

both of these properties. For Technicolor/Interdigital, further exploring multi-modality

interaction is of high interest and has been studied in this thesis.
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In this chapter we present a brief literature review of the machine learning field

centered around Visual Semantic Embedding (VSE). After introducing the concept

of statistical learning in Section 2.1, we will mostly focus on recent deep learning

approaches.

VSE aims at building a vector space where visual and textual representation are

comparable. With that in mind, we will first introduce existing strategies to represent

visual and textual data. Then we will delve into existing multimodal approaches. Finally,

we will explore existing localization methods within the multimodal context.

25



26 literature review

2.1 Statistical learning

In this section, we briefly present the concept of statistical learning. Starting from

supervised learning, we will then introduce more complex objective functions and finish

by introducing neural networks.

2.1.1 Supervised learning

Supervised learning aims at learning an approximation fw parametrized by a set of

coefficients w minimizing an empirical loss L with respect to a dataset D =
{
(xi, yi)

}N
i=1

of aligned (input data, target annotation) pairs. The empirical loss L is often combined

with a regularization penalty R to form the full objective function J .

ŵ = arg min
w

J (w),

J (w,D) = 1
N

N

∑
i=1
L (yi, fw (xi)) +R(w).

(2.1)

How to find the optimal ŵ largely depends on the type of function f used. For

example, if f is a linear regression ŵ can be computed through a closed-form solution

using the least square method. Sometimes there is no closed-form solution or it is

intractable, for example neural networks are nonlinear functions. Nonetheless ŵ can be

approximated using iterative gradient descent methods.

2.1.2 Loss functions

As shown in Equation 2.1 statistical learning aims at minimizing a loss function. The

loss function formalizes the task we want to solve, it also measures the efficiency of the

approximation. Multiple loss functions have been proposed for various types of tasks.

For example, when the target annotation yi is quantitative (e.g. 2D coordinates) it is a

regression problem. A common loss for this type of task is the Mean Square Error (MSE)

defined as follows:

LMSE(w, xi, yi) = ( fw (xi)− yi)
2 . (2.2)
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When the target annotation is categorical (e.g. presence of an object in an image) it is a

classification problem. For classification the Cross-Entropy error is a common objective

to minimize. In this context fw (xi) approximates a probability distribution over the C

classes.

LCE(w, xi, yi) = −
C

∑
c=1

1yi=c [log ( fw (xi))] . (2.3)

Statistical learning is not always fully supervised, it can also be unsupervised or

weakly supervised.

In unsupervised learning, the training data doesn’t contain annotations y and the loss

L can only be expressed with respect to x.

In weakly supervised learning the provided annotation isn’t exactly what we want

the model to predict. For example, in weakly supervised localization yi would be the

class labels of objects present in the image xi and the goals would be to learn a function

fw predicting the position of the object.

In this thesis we aim at learning VSE models and the supervision comes as aligned

pairs of images and their textual descriptions. One of the goals is to solve a retrieval

task. In other words given a query and a dataset VSE needs to produce a ranking while

being trained only with pairs, making it close to being weakly supervised.

In that sense it shares similarities with metric and representation learning in particular

with respect to objective function. Several methods have been proposed to learn such

metrics. In pairwise approaches, [95] minimizes the distance within pairs of similar

training examples with a constraint on the distance between dissimilar ones. This

learning process has been extended to kernel functions as in [65]. Other methods

consider triplets or quadruplets of images, which are easy to generate from classification

training datasets, to express richer relative constraints among groups of similar and

dissimilar examples [8, 31, 91].

2.1.3 Neural networks

In feedforward neural network, the input data is progressively transformed by going

through an alternating sequence of projection layers and non-linear activation function
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until a final projection is produced. A feedforward network with n layers can be formally

represented as follows:

fw(x) = fwn ( fwn−1 (. . . fw2 ( fw1(x)))) . (2.4)

Stacking a large number of such layers produces “deep” architectures which is the

origin of the name Deep Neural Network (DNN) and deep learning. A DNN being differ-

entiable, its parameters can be learned using gradient-based methods. Each parameters

are updated using the gradient ∂J (w)
∂w of the objective function with respect to the

parameters. The gradient for each parameter is computed using the back propagation

algorithm [78]. The strength of each step taken in the gradient direction is weighted by

a learning rate η resulting in the following update of the parameters:

w = w− η
∂J (w)

∂w
. (2.5)

In practice computing the exact gradient is too expensive because it requires evaluating

the model on every example of the dataset. To overcome this problem, methods such

as Stochastic Gradient Descent (SGD) [73, 84] or Adam [50] estimate the gradient from

randomly sampled subset of data called minibatch.

Learning deep learning models from scratch is a challenging task. To obtain a model

generalizing well to unseen data the ratio between the number of parameters |w| and

the amount of data samples N need to be balanced. Training very large neural networks

such as VGG-19 (144 million parameters resulting in 19.6 billion FLOP) or ResNet-152

(60 million parameters resulting in 11.3 billion FLOP) requires a large amount of data.

Fortunately, it has been shown that the features learned by such networks can easily

be reused on different tasks [99]. Making it common to use a neural network pretrained

on a large dataset and to transfer it to a new task or dataset. It often only requires to

train additional adaptation layers.

Pushing the adaptation one step further it is now quite common to “finetune” the

parameters of pretrained network. In other word when using a large pretrained network

in a new model, the weights of the large neural network can be updated in and end-to-

end manner, usually with a smaller learning rate η in order to preserve the low-level

processing already learned.
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universal approximator While it is proven that multilayer feedforward net-

works are universal approximator [14, 40], architecture design is still empirically driven.

Indeed the Universal Approximation capability of neural network doesn’t consider the

learnability properties of these networks. While multiple architectures could potentially

reach the same optimal approximation given a proper combination of parameters,

converging to this optimal solution in a very large parameter space is still a challenge.

Deep learning mostly relies on gradient descent optimization, since it is applied to

non-convex functions, convergence to the global minima is not guaranteed. That is

where the importance of neural network architecture comes in. Different architectures

lead to different landscapes of the parameter space, and can improve the learnability in

multiple ways: it can change convergence speed, stability, robustness to initialization, or

help to converge to a better local minimum.

However using theory to model this characteristic is still an open problem and most

of the approaches are only empirically evaluated. For this reason the deep learning field

with its fast pace progress mostly adopted an empirical paradigm.

2.2 Mono-modal representation

Visual Semantic Embedding models aim to learn a joint visual and semantic representa-

tion. Before exploring multimodal interaction, let’s first look at existing approaches to

generate visual and textual representations.

2.2.1 Computer vision and image representation

The goal of computer vision is to capture high-level understanding from digital images.

In this section we will quickly introduce traditional computer vision approaches and

cover more extensively modern deep learning equivalent.

traditional computer vision Most computer vision tasks require to transform

the low-level information of the visual domain to compact high-level vector represen-

tation. The main challenge resides in projecting the pixel space of images to a smaller

vector space while preserving the content information. Multiple handcrafted methods
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exist, such as appearance based methods representing an image using its edge, gradient

or color histogram.

In the beginning of the 2000s dictionary learning method such as the bag of visual

word models [64] were popular. Local features such as SIFT [62] were first extracted, then

they were encoded as a function of a dictionary of visual words, and finally the visual

code was aggregated to obtain a single vector representation. In the context of object

classification one would typically use this single vector representation to separately

train a classifier, be it a linear regression, a Support Vector Machine (SVM) [13] or a

MultiLayer Perceptron (MLP).

In this framework classification is a two-step process: features are first extracted either

by handcrafted method or learned with an unsupervised method and then a classifier is

trained on the features.

computer vision with deep learning With deep learning models, it is now

common to learn visual representation from scratch in an end-to-end manner. Low-level

processing is learned at the same time as the higher-level reasoning. For example, in a

Convolutionnal Neural Network (CNN) the first few layers are learned filters resembling

Gabor filters and color blobs, while deeper layers capture more specialized features

such as shapes or objects [54].

The convolution layer [56] was introduced to handle visual data, sharing the learn-

able weights by sliding a single kernel over the visual space, thus greatly reducing the

total number of parameters, allowing the processing of images of any size, and making

the model invariant to translation.

AlexNet [54] is a CNN that consists of 5 convolutional layers. It uses Rectified Linear

Unit (ReLU) for non-linear activation function, and its final layer is a linear projection

outputting the scores for the 1000 classes of the ImageNet classification challenge.

When it was proposed in 2012, it reduced the top-5 classification error by half with

an accuracy of 15.3% percent compared to the previous 26% of non-deep approaches.

The top-5 error drops down to 7.3% percent in the next year’s challenge with the

introduction of VGG [82] and its deeper architecture of 13 and 16 convolutional layers

followed by 3 fully connected layers.
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Figure 2.1: Resnet and VGG architecture. The illustration was taken from [37].

Finally, the next big improvement in the ImageNet challenge came from the intro-

duction of the ResNet architecture by He et al. [37]: Assuming that it is easier to learn a

residual mapping than an unreferenced mapping, this approach uses skip connections

to force the network to learn a residual. It allowed for training of much deeper architec-

tures with neural networks up to 200 layers. ResNet achieves a top-5 classification error

of 3.6% on ImageNet. Diagram representation of VGG-19 and ResNet-34 architecture

can be found in Figure 2.1.

In a residual network, the output of the n-th residual layer can be expressed as

follows:

xn+1 = fwn (x
n) + xn, (2.6)

with xn and xn+1 the input and the output of the layer n, the layer only needs to learn

the residual mapping fwn (x
n).

With the top-5 error on classification being extremely low, the field focus moved

toward more difficult localization tasks. With respect to those tasks one key architecture

innovation was the use of fully convolutional networks [61] by getting rid of the final

linear layers. Fully convolutional networks are completely independent of the resolution

of the input image, and preserve spatial information all the way until the final output.

Localization approaches will be more detailed in Section 2.5. We will only mention

here a recent popular visual representation closely linked to the localization model,

called bottom-up features [1]. They are produced by a faster R-CNN [75] trained on

the object recognition task. Instead of producing features straight from a convolution

network with a regular “grid-like” coverage of the entire image, they rely on a region

proposal network extracting bounding boxes containing potential objects. Convolutional
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features are then extracted for each of these bounding boxes to form the final image

representation. It helps the image representation to focus on every important parts of

the image and capture more details by using higher resolution on individual bounding

boxes.

As architecture design is still a very active field, it would be impossible to make an

exhaustive list of architectures. We chose to present the architecture most commonly

used for feature extraction and image representation. In this thesis we will build on top

of these approaches: we will mostly use ResNet and Faster R-CNN as the backbone of

our image representation pipeline.

2.2.2 Computer vision datasets

While important progress has been made on deep learning architectures, it was only

made possible by the apparition of large-scale databases of richly annotated images. We

will introduce some of the major computer vision datasets. Figure 2.2 contains example

images of three of them.

Figure 2.2: Examples of image and annotation from different datasets. left: ImageNet, center:

MS-COCO, right: Visual Genome. The illustrations are taken from [79], [60], and [53].

• ImageNet propose by [16] consists of 14.2 million images, and more than 20000

classes. However the ImageNet Large-Scale Visual Recognition Challenge only

uses a subset of 1.2 million images and 1000 classes. The annotation consists of one

multi-class label per image for image classification and also contains bounding

boxes for object detection. It consists mainly of simple scenes with usually a focus

on a single object.
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• MS-COCO[60] contains 120 000 images, of various types of scene with a higher com-

plexity than ImageNet. The annotation is also richer but covers a smaller number

of classes. It has 80 classes, which are annotated by bounding box, segmentation

masks, and instance segmentation mask. Every image is also annotated with 5

short textual captions describing the scene.

• Flickr-30K[100] contains 30 000 images. Similarly to MS-COCO the annotation

consists of 5 short textual captions describing the scene.

• Visual Genome[53] contains 108, 000 images. It shares some images with MS-COCO and

extends its the annotation with visual questions and answers, object attributes and

relationships between objects.

Our work leverages all of the datasets listed above. ImageNet is used for the pre-

training of the visual representation while Flickr-30K and MS-COCO are used as direct

supervision to align the visual and textual domain. Finally, Visual Genome is only used

for the evaluation of the localization tasks.

2.2.3 Natural language processing and text representation

Natural language processing shares a similar goal with computer vision: Capturing high-

level understanding of digital text. The early days of Natural Language Processing (NLP)

adopted a rule-based paradigm, using hand-written grammar and heuristic rules [93].

In this section we will focus on the recent statistical learning paradigm, and the use of

deep learning model to derive meaningful vector representations of any given text.

As opposed to computer vision, in language, a single word already encodes high-level

semantic while a single pixel is meaningless. Text also has a sequential structure: in a

sentence the order of the words carries important information. Therefore the methods to

compute textual representation need to take these differences into account and change

from the ones used in computer vision.

word and sentence representation Learning textual representation is often

unsupervised, and only rely on large corpora of texts with no extra annotation. Word
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and sentence representations are learned using sequence modeling models trained to

predict the context of a given word/sentence.

For example, Word2vec (W2v) word representation proposed by Mikolov et al. [66]

uses the skip-gram architecture. With the intuition that words used in similar contexts

should have similar representations, given the representation of a word the model will

aim at predicting the surrounding words in a text. After seeing the same word in many

different contexts, the model will converge toward a representation of the word that

captures some of its original semantic.

Similarly, the sentence representation model skip-thought was introduced by Kiros et

al. [52]. Using an encoder decoder architecture: A sentence is encoded to a representation

space and then two decoders will try to predict the previous and following sentence of

the original text.

Text processing pipelines often consist of multiple blocks that can be pre-trained

independently. Word representations are used as the basis for sentence representations,

which can later be used to derive large document representations. This hierarchical

structure allows easier transfer learning with the possibility to reuse the each block

and avoid the need for very large corpora of annotated data for every task. Often the

pre-training of this block is done in an unsupervised manner only using context in

which a word or a sentence is present.

sequence modeling models Most modern language representations are learned

using sequence modeling models such as Recurrent Neural Network (RNN). An RNN

is a form of neural network design to process sequences. Using an internal state, it

can iterate over a sequence and update its internal representation to capture sequential

patterns and sequence representations.

Given a sentence represented as a sequence of words x of length T, xt corresponds to

the vector representation of t-th word of x. The RNN computes the representation of the

sentence as follows:

hT = fw(xT, hT−1), (2.7)

where hT coresponds to the hidden state of the RNN at time step T. To compute

it, we first need to iteratively compute the hidden states at the previous time step

(hT−1, hT−2, ..., h1, h0). To compute h0 we will need the initial hidden state h−1 which

can be randomly sampled or initialized to a specific value depending on the task.
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Long Short-Term Memory (LSTM) is a type of RNN introduced by Hochreiter and

Schmidhuber [39] and is largely adopted to process sequential data. LSTM relies on an

internal state to preserve the current representation of a sequence. Using three sigmoid

gates, LSTM is able to control the flow of information inside the network. Using this

combination of gate the model decides how its internal state is updated with respect to

its current input and its previous state.

Later a simplified version of LSTM called Gated Recurrent Units (GRUs) was proposed

by Cho et al. [9]. GRUs has fewer parameters since it does not have an output gate. They

have been found to have similar performances as LSTM on certain tasks. Figure 2.3

detail the inner working of GRU with its two sigmoid gates z and r. The computation of

the gates and the internal state is defined as follows:

rt = σ
(

Wrxt + Urht−1
)

,

zt = σ
(

Wzxt + Uzht−1
)

,

h̃t = φ
(

Wxt + U
(

rt � ht−1
))

,

ht = ztht−1 +
(
1− zt) h̃t,

(2.8)

with xt and ht−1 the input and the previous hidden state, respectively. W r and Ur are

weight matrices which are learned.

Figure 2.3: Illustration of the GRU showing the flow of information between input/output and

the control gates. h is the hidden state, r the reset gate, z the memory gate and ht

the candidate hidden state. The illustration is taken from [9].
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Finally Simple Recurrent Unit (SRU) further simplifies the GRU architecture by re-

moving time dependency to allow for a better parallelization of multi-layer RNN. SRU is

defined as follows:
rt = σ

(
Wrxt + Ur � h̃t−1

)
,

zt = σ
(

Wzxt + Uz � h̃t−1
)

,

h̃t = rt � h̃t−1 +
(
1− rt)� (Wxt) ,

ht = zt � h̃t +
(
1− zt)� xt.

(2.9)

When comparing Equation 2.8 of GRU and Equation 2.9 of SRU, both are similar

and only use two sigmoid gates. The main benefit of the SRU is the use of pointwise

multiplication in the computation of h̃t making the dimension of the state vector

independent therefore more easily parallelizable. Indeed it allows for the parallelization

of the computation across the dimension without having to wait for the computation of

the entire h̃t−1.

Recently the introduction of the transformers architecture by Vaswani et al. [86]

opened the possibility to use feedforward networks for textual processing. Transformers

heavily rely on self-attention mechanisms. In an effort to preserve sequential information,

positional encoding is summed to the input textual sequence.

2.3 Multi-modal representation

With visual and textual representation having a similar goal of finding a rich

representation, we have seen the very different approaches required to represent the

specificity of each modality efficiently. The textual modality has a strong structure and

limited vocabulary, while the visual modality with its very large input space is extremely

diverse.

Combining visual and textual modality is key to solve certain tasks and can generally

help create better mono-modal representation. Visual information can help disambiguate

textual representation, while the textual representation can add semantic and common

sense knowledge to the visual representation.

Indeed by creating interactions between visual and textual concept when learning

both representation it can help CNN reduce their bias toward texture [32] and help
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them take advantage of context and relation between objects. On the other hand,

grounding language in the visual world might help language representation with

ambiguities and world modeling: Associating objects more easily with its common

attributes disambiguating relationships and references.

Figure 2.4: The top diagram illustrates the multimodal VSE with a visual and textual encoder

projecting to a common space, a textual decoder starting from that space is then used

for the captioning task. The bottom diagram represents a VQA model relying on mul-

timodal fusion to create a visual-semantic representation used for the classification

of the answers. The illustrations are taken from [51] and [4].

Following the notation from Section 2.1, visual and textual modality dataset could

be represented as D =
{
(Ii, Si, yi)

}N
i=1 consisting of triplets of images, sentences and

annotations. Depending on the application and dataset the annotation y is not always

present. For example, in VQA the triplet would consists of an image I, a question S in

natural language and the class of the answer y ∈ Rdo . In cross-modal retrieval, however,

the data would only consists of pairs (I, S) of images and their textual descriptions.

Using models introduced in Section 2.2 the image I and the sentence S will be trans-

formed to a vector representation s = fwt(S) ∈ Rdt and i = fwv(i) ∈ Rdv respectively.

Multiple ways to leverage multimodality have been proposed, we will present two of

them in this section. The first one is modality fusion where both modalities are merged
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to form a single vector representation, this approach is often used in VQA. The second

approach is VSE where each modality is kept separate and is projected to a common

embedding space where an alignment between the two modalities is enforced. Most

common applications of VSE are image captioning and cross-modal retrieval. The fusion

and embedding approaches are illustrated in Figure 2.4.

2.3.1 Multimodal fusion

Concatenation is one of the simplest forms of multimodal fusion. It was first used in

Ren, Kiros, and Zemel [74]. After the concatenation [i, s] of the image i and question

s representations, an LSTM parametrized by weights w is used to predict the answer

ŷ = fw([i, s]).

More recent VQA models are based on bilinear fusion. For example, in [4] the fusion

is done with a bilinear model defined by a third-order tensor T ∈ Rdt×dv×do . The fusion

is the expressed as:

ŷ = fT (i, s) = (T ×1 s)×2 i, (2.10)

where ×1 denoted the i-mode product between tensors.

Bilinear fusion can capture stronger interactions between visual and textual fea-

tures than concatenation. Indeed it computes all possible pairwise products for all the

dimension pairs in s and i.

2.3.2 Visual semantic embeddings

Another approach to leverage multi-modality is Visual Semantic Embedding, by aligning

the representation of both modalities in a single space it opens multiple possibilities.

The goal when training a VSE is to obtain a space where geometric distance can be

interpreted as semantic similarity.

The Canonical Correlation Analysis (CCA) method is certainly one of the first

techniques to align two views of heterogeneous data in a common space [41]. Linear pro-

jections defined on both sides are optimized in order to maximize the cross correlation.

Recently, non-linear extensions using kernel (KCCA [55]) or deep net (DCCA [2]) have

been proposed. [88] exploits DCCA strategies for image-text embeddings, while [98]
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points out some limitations of this approach in terms of optimization complexity and

overfitting and proposes ways to partially correct them. [22] proposes some CCA-based

constraint regularization to jointly train two deep nets passing from one view to the

other (text/image).

When considering the specific problem of embedding jointly images and labels

(classification context), [30, 92] train models that combine a linear mapping of image

features into the joint embedding space with an embedding vector for each possible class

label. Approaches for the more advanced task of textual image description (captioning)

often relies on an encoder/decoder architecture where the encoder consists of a joint

embedding [47, 51]. Other works focus on the sole building of such a joint embedding,

to perform image-text matching and cross-modal retrieval [27, 30, 63, 80].

Our work stems from this latter class. We aim at generating a joint embedding space

that offers rich descriptors for both images and texts. We adopt the contrastive triplet loss

that follows the margin-based principle to separate the positive pairs from the negative

ones with at least a fixed margin [51]. The training strategy with stochastic gradient

descent has to be carefully adapted to the cross-modality of the triplets. Following [27],

we resort to batch-based hard mining.

When training a VSE, the visual and textual representation are projected to the

common embedding space. Let’s call î and ŝ the representation in this new space. Both î

and ŝ belong to the same space of dimension Rd. Multiple types of geometric distances

can be used to measure similarity in this space, the most common one is cosine similarity

define as follows:

c(ŝ, î) =
〈ŝ, î〉
‖ŝ‖ ‖î‖

. (2.11)

Using cosine similarity has multiple benefits, first it is bounded in [−1, 1]. Secondly it

has a low complexity: when working with unit vectors, the cosine similarity is equivalent

to the dot product.
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Once learned VSE can be used to measure similarity between any element of the

embedding, this property is commonly used for retrieval: scoring every element of the

database against a query only requires to measure the distance between them.

Taking advantage of the structured vector space, it is common to train decoders to

solve various types of tasks. It is possible to learn decoders to do paraphrase, image

captioning or image generation from text [35].

A multimodal space also displays interesting properties. Indeed geometric operations

in the embedding can be interpreted as semantic operations. Similarly to word embed-

dings [67], it has been shown that the geometric translation in a VSE captures analogy

[51]. For example, the representation of a red car ired−car can be approximated using

the representation of a blue car iblue−car and the representations of the words “red” and

“blue” sred, sblue as follows:

ired−car ≈ iblue−car − sblue + sred. (2.12)

Our work will focus on VSE. Compared to other multimodal approaches, having a

common embedding space leaves multiple opportunities to expand upon. In the context

of cross-modal retrieval, VSE has one major benefit compared to multimodal fusion:

its efficiency. Indeed once the representation of the images and sentences have been

calculated computing the score between a query and a database can be done in linear

time. Whereas with fusion, the fusion mechanism (often costly) needs to be recomputed

for every pairs of query, element of the database.

2.4 Attention mechanism

Inspired from biological mechanisms [44], attention modules have become widespread

across neural network architectures. With their ability to focus on the most relevant part

of data, they are key in fully leveraging the large features produced by modern models.

Visual attention relies on scoring the different regions of an image. The attention

weights can then be used to select the most relevant regions [97] or to generate a

new representation taking into account the contribution of each region [1]. Figure 2.5
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shows an example of a VQA architecture using visual attention guided using textual

representation.

Figure 2.5: Example of visual attention in a VQA model. The text representation coming from a

GRU is used as context to guide the visual attention. The illustration was taken from

[1].

In the case of image-text matching, multiple forms of attention have been used. Some

models only rely on self-attention [42, 59, 70], that is the attention scores for a modality

are computed using only the context of that modality. For example, in the Dual Attention

Network (DAN) [70], soft attention mechanisms relying on feed forward network and

SoftMax function are learned for the visual and the textual pipeline respectively. Visual

Semantic Reasoning Network (VSRN) [59] does region relationship reasoning using

graph convolutions, which can be seen as a complex form of visual attention.

Other approaches bridge both modalities through the use of cross-modal attention

[57]. These approaches tend to be more costly since the attention scores need to be

computed for all the elements in the database when a new element is added.

2.5 Localization

In this thesis we aim to extend VSE toward localization. In that regards we will first

present fully and weakly supervised localization models, then we will follow with

existing multimodal approaches.

supervised localization Supervised localization methods aim at predicting

the position and the class of objects in an image. Using ground truth localization

from datasets such as ImageNet, MS-COCO, or Visual Genome, models can be trained to

predict bounding boxes [34] or segmentation mask [61] precisely grounding predefined

concepts.



42 literature review

Approaches producing bounding box localization, mostly rely on predicting candidate

regions potentially containing an object and later classifying the presence of specific

objects in these regions. One type of such approaches is called Faster R-CNN and

was proposed by Ren et al. [75]. This model improves on previous approaches [33, 34]

by incorporating the region proposal mechanism to the classification model, making

it end-to-end trainable. The architecture diagram of Faster R-CNN can be seen in

Figure 2.6.

Figure 2.6: Faster R-CNN efficiently shares the convolutionnal feature maps between The Region

Proposal Network and region classification. The illustration was taken from [75].

This model was later shown to produce rich visual features [1]. The spatialization of

these features through bounding box paired with convolutional features makes them

good candidate to transfer them to task that can leverage localization such as VQA or

captionning. Overall, this type of feature performs better as global image representation

than previous single convolutional representation.

weakly supervised localization The rich annotations required for supervised

learning rapidly become costly to obtain, making the development of weakly supervised

approaches appealing. A number of weakly supervised object localization approaches

extrapolate localization features while training an image classifier, e.g.[15, 20, 102]. The
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main strategy consists in using a fully convolutional deep architecture that postpones

the spatial aggregation (pooling) at the very last layer of the net. It can be used both

for classification and for object detection. The Class Activation Mapping (CAM) weakly

supervised approach [102] is illustrated in Figure 2.7.

Figure 2.7: Global Average Pooling (GAP) aggregates 2d convolutionnal activation to a single

value, making architecture fully convolutionnal and allowing weakly supervised

localization through CAM. The illustration was taken from [102].

cross-modal embedding and localization Existing works that combine

localization and multimodal embedding rely on a two-step process. First, regions are

extracted either by a dedicated model, e.g., EdgeBox in [89], or by a module in the

architecture. Then the embedding space is used to measure the similarity between these

regions and textual data. [47, 72] use this approach on the dense captioning task to

produce region annotations. It is also used for phrase localization by [89] where the

region with the highest similarity with the phrase is picked. To address this specific

problem of phrase grounding, Xiao et al. [94] proposed to learn jointly a similarity score

and an attention mask. The model is trained using a structural loss, leveraging the

syntactic structure of the textual data to enforce corresponding structure in the attention

mask.
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2.6 Positionning

This thesis revolves around Visual Semantic Embedding. We aim at extending existing

approaches following three intertwined axes: Application, architecture and learning

methods. A visual representation of our objectives can be found in Figure 2.8.

application Extending existing approaches, we aim at improving VSE performance

on cross-modal retrieval. In parallel, we would like to extend VSE localization ability,

with a focus on visual grounding of text. While existing approaches use VSE to score

regions and derive localization, [47, 87] we explore a more direct relation between

the embedding space and spatial information coming from the visual representation

avoiding the need of objects/region detectors trained using fully supervised annotation.

architecture We build on top of the two-branch architecture proposed by [51].

We first propose to improve the existing architecture by combining latest visual and

textual representation such as ResNet, Faster R-CNN and SRU.

With localization in mind, we use selective spatial pooling [20] to learn a weakly

supervised visual representation taking advantage of the new fully convolutional CNNs

to preserve spatial information until the joint embedding space.

Departing from complex reasoning methods [57, 59], we propose to use distributed

self-attention to fully take advantage of the spatialized region features at a very low

computational cost.

learning methods Finally, we aim at improving the learning mechanism used to

train VSE. There is a strong connection between learning and architecture choice. With

the current two-branch model, the cosine similarity is commonly used in a contrastive

triplet loss to enforce alignment in the embedding space [51]. Building on this work, we

explore hard negative mining strategies for the contrastive triplet loss.

Taking inspiration from the cross-modal retrieval use of VSE, we delve into a new

method to learn a differentiable approximation of ranking metrics and use it to train

not only VSE but any rank-based model such as ordinal regression.

Lastly, we will discuss the different learning strategies used along the way and their

implication with respect to both application and architecture. It includes hyperparameter
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tuning, training by part, pre-training, relation between image resolution, impact of batch

size, training time, etc.

Figure 2.8: Positioning and objectives visualization of the three development axes: architecture

in Chapter 3, application in Chapter 4 and learning in Chapter 5.
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Chapter abstract

Several works have proposed to learn a two-path neural network that maps images

and texts, respectively, to a same shared Euclidean space where geometry captures useful

semantic relationships. Such a multimodal embedding can be trained and used for various

tasks, notably image captioning. In the present chapter, we introduce two new architectures

of this type. More specifically, we propose two different types of visual path tailored to take

advantage of their respective visual features: The first one is based on ResNet leverages

47
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space-aware pooling mechanisms; the second one relies on distributed self-attention to

leverage at best localized bottom-up features. Once both are combined with a textual path

which is jointly trained from scratch, our semantic-visual embeddings offer versatile models.

Trained under the supervision of captioned images, they yield competitive performance on

cross-modal retrieval.

The work in this chapter has led to two conference papers, one published and one

under review:

• Martin Engilberge, Louis Chevallier, Patrick Pérez, and Matthieu Cord. “Finding

beans in burgers: Deep semantic-visual embedding with localization.” In: Pro-

ceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018,

pp. 3984–3993

• Martin Engilberge, Louis Chevallier, Patrick Pérez, and Matthieu Cord. “Semantic-

Visual Embedding with Distributed Self-Attention.” In: arXiv preprint. 2020

3.1 Introduction

Text and image understanding is progressing fast thanks to the ability of artificial

neural nets to learn, with or without supervision, powerful distributed representations of

input data. At runtime, such nets embed data into high-dimensional feature spaces where

semantic relationships are geometrically captured and can be exploited to accomplish

various tasks. Off-the-shelf already trained nets are now routinely used to extract

versatile deep features from images which can be used for recognition or editing tasks,

or to turn words and sentences into vectorial representations that can be mathematically

analyzed and manipulated. Detailed presentation of the leading visual and textual

representation models can be found in Section 2.2.

Recent works presented in Section 2.3 have demonstrated how such deep represen-

tations of images and texts can be jointly leveraged to build VSEs [30, 47, 51, 76]. The

ability to map natural images and texts in a shared representation space where geom-

etry (distances and directions) might be interpreted is a powerful unifying paradigm.

Not only does it permit revisiting visual recognition and captioning tasks, but it also

opens up new usages, such as cross-modal content search or generation and zero-shot
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learning. One popular approach to semantic-visual joint embedding is to connect two

mono-modal paths with one or multiple fully connected layers [3, 27, 47, 51, 89]: A

visual path based on a pre-trained CNN and a text path based on a pre-trained RNN

operating on a given word embedding. Using aligned text-image data, such as images

with multiple captions from MS-COCO dataset [60], final mapping layers can be trained,

along with the optional fine-tuning of the two branches.

Building on this line of research, we investigate two orthogonal methods to represent

images.

In our first approach named BEAN1 we introduce new pooling mechanisms in

the visual path. Inspired by recent work on weakly supervised object localization

[20, 102], we propose in particular to leverage selective spatial pooling with negative

evidence proposed in [20] to improve visual feature extraction without resorting, e.g., to

expensive region proposal strategies. Without the use of spatialized supervision, this

architecture can be trained and fine-tuned in an end-to-end manner using gradient-

based optimization and can also produce weakly supervised localization. In this chapter

we focus on cross-modal retrieval, localization mechanisms will be detailed later in

Chapter 4.

In our second approach, we propose a visual pipeline based on a new visual self-

attention mechanism, called SMILE for SeMantic embeddIng with seLf attEntion. SMILE

aims at learning how the multi-object-region features of an image affect each other. We

learn this dependency using a single neural layer that provides a simple yet powerful

attention representation distributed across regions and feature channels. As opposed to

BEAN, SMILE use pre-extracted features from a faster R-CNN model pretrained with

spatial supervision. The feature extraction being costlier, it is done offline and prevents

further fine-tuning of the feature extractor.

The proposed modifications to current approaches, along with additional design

and training specifics, lead to two new systems whose performance is assessed on

cross-modal matching, effectively composed of two symmetric sub-tasks: Retrieving

captions from query images and vice versa.

1 Named BEAN after the title of the article where it was first introduced: “Finding beans in burgers: Deep

semantic-visual embedding with localization” [23].
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The rest of this chapter is organized as follows: Section 3.2 is dedicated to the

presentation of our own systems, which couples selective spatial pooling and distributed

self attention with recent architectures and which relies on a triplet ranking loss based

on hard negatives. More details on the systems and their training are reported in

Section 3.3, along with various experiments. Our systems obtain competitive results

on the cross-modal retrieval task. Finally, extensive ablation studies are conducted in

Section 3.4.

3.2 Visual Semantic Embedding

The overall structure of the proposed approach, shown in Figure 3.1, follows the dual

path encoding architecture of Kiros, Salakhutdinov, and Zemel [51] visible in Figure 2.4.

We first explain its specifics before turning to its training with a cross-modal triplet

ranking loss.

Figure 3.1: Two-path multimodal embedding architecture. Images of arbitrary size and texts of

arbitrary length pass through dedicated neural networks to be mapped into a shared

representation vector space. The visual path (blue) is composed of a convolutional

neural network, followed by adaptation layers, which aggregates previous feature

maps into a vector and a final projection to the final output space; The textual

path (orange) is composed of a recurrent net running on sequences of text tokens

individually embedded with an off-the-shelf map (word2vec in experiments).

In this section we introduce two new architectures. Both share the same textual

pipeline and only differ in their visual path. One is spatially supervised: based on

a faster R-CNN object detector (See Figure 2.6), and the second one only relies on a
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ResNet (See Figure 2.1) pretrained on classification and can easily be trained in an

end-to-end manner and preserves spatial information until the joint embedding.

3.2.1 Textual path

The inputs to this path are tokenized sentences (captions), i.e., variable length

sequences of tokens S = (s1 · · · sT). Each token st is turned into a vector representation

st ∈ RK by the pre-trained word2vec embedding [66] of size K = 620 used in [52]. Several

RNNs have been proposed in the literature to turn such variable length sequences of

(vectorized) words into meaningful, fixed-sized representations. In the specific context

of semantic-visual embedding, [27, 51] use for instance gated recurrent unit (GRU) [10]

networks as text encoders. Based on experimental comparisons, we chose to encode

sentences with the simple recurrent unit (SRU) architecture recently proposed in [58].

Since we train this network from scratch, we take its output, up to `2 normalization,

as the final embedding of the input sentence. There is no need here for an additional

trainable projection layer.

Formally, the textual path reads:

S w2v7−−→ S
normSRUφ7−−−−−−→ v ∈ Rd, (3.1)

where S = w2v(S) = RK×T is an input sequence of text tokens vectorized with word2vec

and v is the final sentence embedding in the joint semantic-visual space, obtained after

`2-normalizing the output of SRU with parameters φ.

3.2.2 BEAN Visual path

The BEAN visual path is inspired by weakly supervised object detection. Taking

advantage of fully convolutional architecture [61], and selective spatial pooling [20, 102]

we aim at linking spatial localization to concepts from VSE. With that purpose in mind

our visual path needs to preserve a connection between input image, spatialize features,

and final image representation.

In order to accommodate variable size images and to benefit from the performance

of very deep architectures, we rely on fully convolutional residual ResNet-152 [37] as
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our base visual network. Its penultimate layer outputs a stack of D = 2048 feature maps

of size (w, h) = (W
32 , H

32 ), where (W, H) is the spatial size of the input image. These

feature maps retain coarse spatial information that lends itself to spatial reasoning in

subsequent layers. Following the weakly supervised learning framework proposed by

Durand et al. [19, 20], we first transform this stack through a linear adaptation layer of

1× 1 convolutions. While in Weldon [20] and in Wildcat [19] the resulting maps are

class-related (one map per class in the former, a fixed number of maps per class in the

latter), we do not address classification or class detection here.

Hence we empirically set the number D′ of these new maps to a large value, 2400

in our experiments. A pooling à la Weldon is then used, but again in the absence

of classes, to turn these maps into vector representations of dimension D′. A linear

projection with bias, followed by `2 normalization accomplishes the last step to the

embedding space of dimension d.

More formally, the visual embedding path is defined as follows:

I
fθ07−→ F

gθ17−→ G sPool7−−→ h ∈ RD′ pθ27−→ x ∈ Rd, (3.2)

where: I ∈ (0, 255)W×H×3 is the input color image, fθ0(I) ∈ Rw×h×D
+ is the output

of ResNet’s conv5 parametrized by weights in θ0, gθ1 is a convolution layer with

|θ1| = D × D′ weights and with activation in Rw×h×D′ , sPool is the selective spatial

pooling with negative evidence defined in [20]:

h[k] = max G[:, :, k] + min G[:, :, k], k = 1 · · ·D′, (3.3)

and pθ2 is an `2-normalized affine function

pθ2(h) =
Ah + b
‖Ah + b‖2

, (3.4)

where θ2 = (A, b) is of size (D′ + 1)× d. We shall denote x = F(I; θ0:2) for short this

visual embedding.

3.2.3 SMILE visual path

Our second visual path aims at producing finer visual representation by exploring

relations between image regions. Starting from a spatially pre-trained Faster R-CNN

used to extract a selection of salient object regions, we propose a distributed self-attention

mechanism merging the said regions by putting them in competition.



3.2 visual semantic embedding 53

Figure 3.2: Details of the proposed semantic-visual embedding architecture with BEAN vi-

sual path. An image of size W×H× 3 is transformed into a unit norm representation

x ∈ Rd; likewise, a sequence of T tokenized words is mapped to a normalized rep-

resentation v ∈ Rd. Training will aim to learn parameters (θ0, θ1, θ2, φ) such that

cross-modal semantic proximity translates into high cosine similarity 〈x, v〉 in the

joint embedded space. Boxes with white background correspond to trainable mod-

ules, with parameters indicated on top. In our experiments, the dimensions are

K = 620, D = 2048 and D′ = d = 2400.

Faster R-CNN [75] proposes a variable-size selection of salient regions in the input

image via its region pooling network and produces convolutional features for each of

these regions. Given a color input image I ∈ (0, 255)w×h×3, our visual embedding path

is formally defined as follows:

I BU7−→ F
Convθ07−−−→ G

Attθ17−−→ x ∈ Rd, (3.5)

where BU(I) ∈ RR×D
+ is the output of a pre-trained Faster R-CNN, that is the bottom-up

features for the R proposed regions, Convθ0 is a 1× 1 convolution layer with |θ0| = D× d

weights and an activation G in Rd×R, and Attθ1 is the proposed attention mechanism

that merges the region-wise activations into a final embedding vector x in Rd.

SMILE embedding with distributed self-attention

Our main contribution consists in a vectorial, distributed self-attention mechanism in

the visual path. Lightweight and efficient, it is designed to process multi-region features.

By predicting multidimensional attention scores instead of just scalars, it allows for a

finer re-weighting of the different regions of interest and, as a consequence, it produces

a richer image embedding. The benefit of this novel attention mechanism first shows
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in text-image matching, but also for visual grounding. As an additional, stand-alone

improvement of our system, we introduce a simple, yet effective, asymmetric re-ranking

(RR) technique that takes full advantage of the multi-modality for improved retrieval

performance.

Figure 3.3: From region features to global descriptors with distributed self-attention in

SMILE visual path. Given the bottom up region features G produced by a Faster

R-CNN, our self-attention module learns to combine the features into a single image

representation. The module first produces a distributed (channel, region) weighting

A by learning a convolution on the original features and applying a softmax over the

different regions. This weighting is applied to the original features to produce the

final image representation.

distributed self-attention According to (3.5), an input image is turned into a

collection G ∈ Rd×R of R region-wise features, with R variable. These d-dimensional

features are `2-normalized, i.e., ‖G[:, r]‖2 = 1, ∀r ∈ J1, RK. This variable-width matrix is

fed to the attention module Attθ1 , detailed in Figure 3.3, which produces an attention

matrix A ∈ Rd×R with a weight for each channel-region pair (k, r) ∈ J1, dK× J1, RK.

For each feature channel, a weighted average of all regions’ contributions can thus be

computed to produce the final d-dimensional image embedding x. Formally:

x = (A ◦ G)1, (3.6)

where ‘◦’ denotes Hadamard entry-wise product. This yields for each feature channel

k ∈ J1, dK:

x[k] =
R

∑
r=1

a[k, r]G[k, r], (3.7)
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with positive weights required to sum to one. The attention matrix is defined as follows:

A = σrow
(
WG), (3.8)

where W ∈ Rd×d is a trainable matrix and σrow denotes the softmax operator applied

row-wise. Note that the pre-multiplication by W amounts to a 1× 1 convolution. The

weights θ1 of this layer are the entries of the matrix.

Figure 3.4: Proposed semantic-visual embedding architecture with SMILE visual path. (top)

An input image is transformed into a representation x ∈ Rd by the proposed visual

path with distributed self-attention mechanism detailed in Figure 3.3; (bottom) An

input sentence in the form of tokenized words is mapped as well to a representation

v ∈ Rd. The two-stream architecture with parameters (θ0, θ1, φ) is trained with a

triplet loss such that closeness in embedded space captures multimodal semantic

proximity. White background boxes are trainable modules (with parameters indicated

on top). As in BEAN model, the dimensions are set to K = 620, D = 2048 and

d = 2400 in the experiments.

3.2.4 Learning and loss function

Both architectures are summarized in Figure 3.2 and Figure 3.4. The aim of training

them is to learn the parameters θ of the visual path, as well as all parameters φ of

the SRU text encoder. The goal is to create a joint embedding space for images and

sentences such that closeness in this space can be interpreted as semantic similarity.

This requires cross-modal supervision such that image-to-text semantic similarities are
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indeed enforced. Note that mono-modal supervision can also be useful and relatively

easier to get in the form, e.g., of categorized images or of categorized sentences. Both

are indeed used implicitly when relying on pre-trained CNNs and pre-trained text

encoders. It is our case as well as far as the visual path is concerned. However, since our

text encoder is trained from scratch, the only pure text (self-)supervision we implicitly

use lies in the pre-training of word2vec.

contrastive triplet ranking loss Following [51], we resort to a contrastive

triplet ranking loss. Given a training set T =
{
(In, Sn)

}N
n=1 of aligned image-sentence

pairs – the sentence describes (part of) the visual scene – the empirical loss to be

minimized takes the form:

L(Θ; T ) = 1
N

N

∑
n=1

(
∑

m∈Cn

loss(xn, vn, vm)

+ ∑
m∈Dn

loss(vn, xn, xm)
)

, (3.9)

where Θ = (θ, φ) are the parameters to learn, xn = F(In; θ) is the embedding of

image n, vn = normSRUφ(w2v(Sn)) is the embedding of sentence n, {Sm}m∈Cn is a

set of sentences unrelated to n-th image, {Im}m∈Dn is a set of images unrelated to n-th

sentence. The two latter sets are composed of negative (“constrastive”) examples. The

triplet loss is defined as:

loss(y, z, z′) = max
{

0, α− 〈y, z〉+ 〈y, z′〉
}

, (3.10)

with α > 0 a margin. It derives from triplet ranking losses used to learn metrics and to

train retrieval/ranking systems. The first argument is a “query”, while the second and

third ones stand respectively for a relevant (positive) answer and an irrelevant (negative)

one. The loss is used here in a similar way, but with a multimodal triplet. In the first

sum of Equation 3.9, this loss encourages the similarity, in the embedding space, of an

image with a related sentence to be larger by a margin to its similarity with irrelevant

sentences. The second sum is analogous, but centered on sentences.

mining hard negatives In [47, 51], contrastive examples are sampled at random

among all images (resp. sentences) in the mini-batch that are unrelated to the query

sentence (resp. image). Faghri et al. [27] propose instead to focus only on the hardest

negatives. We follow the same strategy: For each positive pair in the batch, a single
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contrastive example is selected in this batch as the one that has the highest similarity

with the query image/sentence while not being associated with it. This amounts to

considering the following loss for the current batch B =
{
(In, Sn)

}
n∈B:

L(Θ;B) = 1
|B| ∑

n∈B

(
max

m∈Cn∩B
loss(xn, vn, vm)

+ max
m∈Dn∩B

loss(vn, xn, xm)
)

. (3.11)

Beyond its practical interest, this mining strategy limits the amount of gradient averaging,

making the training more discerning. Figure 3.5 contains a 2D visualization showing the

difference between the contrastive loss, its hard negative variant and a solved situation

where the loss is minimal.

Figure 3.5: 2D visualization of contrastive losses. On the standard contrastive loss, triplets are

formed using all the contrastive examples that violate the α margin around the

positive pair. On the hard negative variant, only one triplet is formed using the

contrastive element that maximizes the violation.

3.2.5 Re-ranking

When used for cross-modal retrieval, the trained model turns database images and

texts (captions) into collections {xi}M
i=1 and {vj}N

j=1 of representations. Cross-modal

retrieval then amounts to finding the most relevant text (resp. image) for a query image

(resp. text). Denoting S = [〈xi, vj〉] ∈ RM×N , the cross-modal similarity matrix in the em-

bedded space, caption retrieval for the i-th image for instance reads j∗ = arg maxj S[i, j].
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However, this similarity search ignores the relation that candidate captions might have

with the other images of the database [90]. In other words, the score of caption j for

query image i should somewhat take into account the similarity S[:, j] of this caption

with all images. In particular, if vj∗ turns out to be more similar to another image, i.e.,

S[i, j∗] 6= max S[:, j∗], then the initial score of j∗ should be downgraded. This calls for

a normalization of the scores2 yielding a re-ranking of retrieved results. To leverage

this cross-modal information, we propose a simple score normalization as follows. For

image retrieval, the new score matrix is defined as:

SIR[i, j] = S[i, j] +
S[i, j]

max(S[i, :])
, ∀(i, j) ∈ J1, MK× J1, NK. (3.12)

Likewise, for caption retrieval:

SCR[i, j] = S[i, j] +
S[i, j]

max(S[:, j])
, ∀(i, j) ∈ J1, MK× J1, NK. (3.13)

This way, when matching an image (resp. a sentence) to a sentence (resp. an image) we

take into consideration the relative ranking of both the sentence and the image with

respect to the other images and other sentences. If a pair (i, j) was already top scoring

on both dimensions of S, meaning S[i, j] is larger than all elements of S[:, j] and S[i, :],

its rank will not be changed. However, if S[i, j] is ranked differently in S[:, j] and S[i, :]

the final score will be updated to form a more consistent ranking. An example can be

seen in Figure 3.6.

2 This problem is reminiscent of collaborative filtering, where available user-item ratings can be normalized

in a number of ways before matrix completion is performed.
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Figure 3.6: Re-ranking example. In the left matrix, the original score are displayed and the

wrongly retrieved images (respectively caption) are colored in yellow (respectively

red), the two right matrices contain the scores after being updated using Equation 3.12

and Equation 3.13.

3.3 Retrieval experiments

Starting from images annotated with text, we aim at producing rich descriptors for both

image and text that live in the same embedding space. Our model is trained on the

MS-COCO and Flickr-30K datasets. To evaluate the overall quality of the model we use

cross-modal retrieval.

3.3.1 Training

datasets To train our model, we used the MS-COCO dataset [60]3. This dataset

contains 123,287 images (train+val), each of them annotated with 5 captions. It is

originally split into a training set of 82,783 images and a validation set of 40,504

images. The authors of [47] proposed another split (called rVal in the rest of the paper)

keeping from the original validation set 5,000 images for validation and 5,000 for

testing and using the remaining 30,504 as additional training data. To make our results

comparable, we trained a model using each split. We also trained one of our models on

the Flickr-30K dataset [100]; this dataset contains 31,000 images, 1000 images are kept

3 http://cocodataset.org

http://cocodataset.org
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for validation and 1000 for testing, the rest is used for training. For evaluation, we use

the MS-COCO and Flickr-30K datasets.

text pipeline To represent individual word tokens as vectors, we used pre-trained

word2vec of size K = 620 from [52] with no further fine-tuning. The SRU text encoder

[58] is trained from scratch jointly with the image pipeline. It has four stacked hidden

layers of dimension 2400. Following [58], 0.25-probability dropout is applied on the

linear transformation from input to hidden state and between the layers.

bean image pipeline and model The BEAN image pipeline is pre-trained on

its own in two stages. We start from original ResNet-152 [37] pre-trained on ImageNet

classification task. Then, to initialize the convolutional adaptation layer gθ1 , we consider

temporarily that the post-pooling projection is of size 1000 such that we can train both

on ImageNet as well. Once this pre-training is complete, the actual projection layer pθ2

onto the joint space is put in place with random initialization, and combined with a

0.5-probability dropout layer. As done in [27], random rectangular crops are taken from

training images and resized to a fixed-size square (of size 256× 256).

Visual and textual pipelines are trained together with pairs of images and captions,

using Adam optimizer [50]. Not every part of the model is updated from the beginning.

For the first 8 epochs only the SRU (parameters φ) and the last linear layer of the

image pipeline (θ2) are updated. After that, the rest of the image pipeline (θ0:1) is also

fine-tuned. The training starts with a learning rate of 0.001 which is then divided by

two at every epoch until the seventh and kept fixed after that. Regarding mini-batches,

we found in contrast to [27] that their size has an important impact on the performance

of our system. After parameter searching, we set this size to 160. Smaller batches result

in weaker performance while too large ones prevent the model from converging.

smile image pipeline and model The SMILE image pipeline uses bottom-up

features extracted using a pre-trained Faster R-CNN on Visual Genome: For MS-COCO we

use the features provided by [1], and the ones provided by [57] for Flickr-30K. The

bottom-up features coming from Faster R-CNN are of dimension 36× 2048 and are used

with no further fine-tuning.
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The model is trained in two stages, a warm-up stage for the first epochs where the

visual pipeline is initialized (parameters θ0 and θ1), while the textual path is kept frozen.

After 5 epochs the SRU (parameters φ) is also updated. We use the Adam optimizer

[50] with a learning rate of 0.001 and halve it after epochs 6, 15, 25, 40 and 60. The batch

size is empirically set to 192. The model is trained for 100 epochs, we select the best

epoch using the validation score on the cross-modal retrieval task.

3.3.2 Cross-modal retrieval

The BEAN and SMILE models are both compared to similar existing architectures. Our

models are quantitatively evaluated on a cross-modal retrieval task. Given a query

image (resp. a caption), the aim is to retrieve the corresponding captions (resp. image).

Since MS-COCO and Flickr-30K contain 5 captions per image, recall at r (“R@r”) for

caption retrieval is computed based on whether at least one of the correct captions is

among the first r retrieved ones. For MS-COCO, the evaluation is performed 5 times on

1000-image subsets of the test set and the results are averaged (5-fold 1k evaluation

protocol).

Results for BEAN are reported in Table 3.1. We compare our model with similar

methods. For caption retrieval, we surpass VSE++ [27] by (5.2%,0.9%) on (R@1,R@10) in

absolute, and by (3.9%,2.0%) for image retrieval. Three other methods are also available

online, 2-Way Net [21], LayerNorm [3] and Embedding network [89]. The three methods

are based on VGG network while VSE++ which uses a ResNet reports much stronger

performance. We consistently outperforms all similar models, especially in terms of

R@1.

The most significant improvement comes from the use of hard negatives in the loss,

without them recall scores are significantly lower (R@1 - caption retrieval: -20,3%, image

retrieval: -16.3%).

Note that in [27], the test images are scaled such that the smaller dimension is 256 and

centrally cropped to 224× 224. Our best results are obtained with a different strategy:

Images are resized to 400× 400 at inference irrespective of their size and aspect ratio,

which our fully convolutional visual pipeline allows. When using the scale-and-crop

protocol instead, the recalls of our system are reduced by approximately 1.4% in average
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on the two tasks, remaining above VSE++ but less so. For completeness we tried our

strategy with VSE++, but it proved counterproductive in this case.

Caption retrieval Image retrieval

Model CNN R@1 R@5 R@10 R@1 R@5 R@10

Embedding network [89] VGG 50.4 79.3 89.4 39.8 75.3 86.6

2-Way Net [21] VGG 55.8 75.2 - 39.7 63.3 -

LayerNorm [3] VGG 48.5 80.6 89.8 38.9 74.3 86.3

VSE++ [27] R152 64.6 - 95.7 52.0 - 92.0

BEAN R152 69.8 91.9 96.6 55.9 86.9 94.0

Table 3.1: Comparison of BEAN with related approaches for cross-modal retrieval on MS-COCO.

On both caption retrieval from images and image retrieval from captions, the proposed

architecture outperforms the similar systems. It yields an R@1 relative gain of 38%

(resp. 40%) with respect to best published results [89] on cross-modal caption retrieval

(resp. image retrieval), and 8% (resp 7.5%) with respect to best online results [27].

smile results As far as we know, the best comparable results on this task are

obtained by the Visual Semantic Reasoning Network (VSRN) [59]. On MS-COCO 1K and

for caption retrieval, we surpass it by (5.8%, 2.6%, 0.9%) on (R@1, R@5, R@10) in absolute,

and by (3.6%, 2.1%, 1.3%) for image retrieval. On the Flickr-30K dataset and for caption

retrieval we surpass it by (11.0%, 6.6%, 2.6%) on (R@1, R@5, R@10) in absolute, and on

image retrieval by (7.6%, 4.9%, 3.6%).

SMILE also surpasses the BEAN model on MS-COCO 1K for caption retrieval by (10.4%,

4.5%, 2.5%) on (R@1, R@5, R@10) in absolute, and on image retrieval by (7.8%, 4.0%,

1.8%). This large gap in performance can be explained by the use of spatially supervised

“bottom-up” features instead of simple ResNet features.

Overall, we obtain competitive results on all metrics and the simplicity of our model

particularly shines on a smaller dataset like Flickr-30K, where the performance gap

with more complex models (reasoning, cross attention) is the largest. Our architecture

fully takes advantage of the richness of bottom-up features and is able to transfer their

good properties to the final image representation.
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MS-COCO dataset

caption retrieval image retrieval

model R@1 R@5 R@10 R@1 R@5 R@10

SCAN [57] 70.9 94.5 97.8 56.4 87.0 93.9

MTFN [90] 74.3 94.9 97.9 60.1 89.1 95.0

VSRN [59] 76.2 94.8 98.2 62.8 89.7 95.1

SMILE w/o RR 79.4 96.4 99.1 63.7 90.9 95.8

SMILE 82.0 97.4 99.1 66.4 91.8 96.4

Flickr-30K dataset

caption retrieval image retrieval

model R@1 R@5 R@10 R@1 R@5 R@10

SCAN [57] 67.9 89.0 94.4 43.9 74.2 82.8

MTFN [90] 65.3 88.3 93.3 52.0 80.1 86.1

VSRN [59] 71.3 90.6 96.0 54.7 81.8 88.2

SMILE w/o RR 80.0 95.3 97.6 59.3 84.9 90.4

SMILE 82.3 97.2 98.6 62.3 86.7 91.8

Table 3.2: Comparative performance of SMILE for Cross-modal retrieval. The proposed

model outperforms state-of-the-art system based on the bottom-up features on the

Flickr-30K dataset, showing the effectiveness of the proposed self-attention mecha-

nism and its rich visual representation even when trained on a small dataset. SMILE

corresponds to the model described in Equation 3.2.3, with its distributed self-attention

module and re-ranking during testing. For the sake of comparison, we also provide

the test scores without the re-ranking (w/o RR).
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3.3.3 Discussion

mining hard negative and batch size The hard negative contrastive loss

should benefit from using larger minibatch. Indeed the larger the minibacth the more

likely it is to select a good hard negative when making triplets, resulting in better

parameters update and faster convergence. However in practice we have observed a

performance decline when batch size becomes too large. A possible explanation for this

phenomenon is the presence of false negatives in the dataset. Actually, there are multiple

pairs of image caption in MS-COCO that are similar, the caption of one image could be

used to describe another image. However this alternate pairing is not annotated and

is considered as a negative pair. If such false negative pairs are selected during the

making of triplets, it would result in incorrect parameters update hurting the overall

performance of the model.

caption retrieval image retrieval

model R@1 R@5 R@10 R@1 R@5 R@10

Emb. network [89] 40.7 69.7 79.2 29.2 59.6 71.7

2-Way Net [21] 49.8 67.5 - 36.0 55.6 -

VSE++ [27] 52.9 - 87.2 39.6 - 79.5

DAN [71] 55.0 81.8 89.0 39.4 69.2 79.1

BEAN (MS-COCO only) 46.5 72.0 82.2 34.9 62.4 73.5

Table 3.3: Direct transfer to Flickr-30K with BEAN. Although cross-validated and trained

on MS-COCO only, our system delivers good cross-modal retrieval performance on

Flickr-30K, compared to recent approaches trained on Flickr-30K: It is under the

two best performing approaches, but above the two others on most performance

measures.

dataset size and model architecture Training large deep learning model

using small datasets is challenging, large network quickly overfit the dataset obtaining

minimal loss on the training set but generalizing poorly to validation set. The BEAN

architecture with the fine-tuning of its large Resnet-152 was prone to overfitting.
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We propose to investigate how the BEAN model trained on MS-COCO may be trans-

ferred as such to other datasets, namely Flickr-30K here. We report the results in

Table 3.3. Not surprisingly, our performance is below the best systems [27, 71] trained

on Flickr-30K. Yet, while not being trained at all on Flickr-30K, it outperforms on

almost all measures two other recent approaches trained on Flickr-30K [21, 89]. Note

that fine-tuning our system on Flickr-30K makes it outperform all, including [27, 71],

by a large margin (not reported in Table for the sake of fairness).

We chose to keep the architecture used on MS-COCO as it is and to experiment with

transfer and fine-tuning. An actual evaluation on Flickr-30K would require cross-

validation of the various hyper-parameters. This dataset being substantially smaller

than MS-COCO, such a task is challenging given the size of our architecture with its 2400

new feature maps and its large final embedding dimension of 2400.

On the other hand, the SMILE architecture can easily be trained on Flickr-30K and

outperforms all existing approaches. The large Faster R-CNN network is used to extract

features offline, leaving a minimal amount of learnable parameters in the trained model,

making it resilient to overfitting even on small datasets.

image representation and resolution In the BEAN architecture, we noticed

that the performance was directly linked to the resolution of the input images. Higher

resolution tended to improve performance, however, due to hardware limitations we

were not able to train a model with image larger than 256× 256. Interestingly, increasing

resolution at testing time further improve results and showed the potential of a fully

convolutional network. Resolution might also explain the good performance of bottom-

up features, since they are extracted with high-resolution images of dimension up to

1000× 1000 pixels.

3.4 Ablation and model understanding

In order to get a better understanding of both proposed models, we conduct additional

experiments and ablation study to identify which part of the models contribute to the

overall performance.



66 visual semantic embedding

3.4.1 BEAN: Changing pooling

One of the key elements of the proposed BEAN architecture is the final pooling layer,

adapted from Weldon [20]. To see how much this choice contributes to the performance

of the model, we tried instead the Global Average Pooling (GAP) [102] approach. With

this single modification, the model is trained following the exact same procedure as

the original one. This results in less good results: For caption retrieval (resp. image

retrieval), it incurs a loss of 5.3% for R@1 (resp. 4.7%) for instance, and a loss of 1.1% in

accuracy in the pointing game.

3.4.2 SMILE: Impact of self-attention

To measure the impact of the self-attention in SMILE, we evaluate our model against

two baselines. First, we visualize its effect using the visual grounding capability of the

model, then we use cross-modal retrieval to measure performance differences.

Figure 3.7: Self-attention visualization in SMILE. (Orange) “Mean” attention-less model base-

line; (Green) Proposed attention mechanism. With its distributed self-attention mod-

ule, SMILE is able to represent the image more globally, focusing less on specific

details. As indicated by the transparent overlay, its attention is indeed more spread

out, highlighting more accurately the salient parts of the scene.

Using the localization method described in Section 4.2, we can visualize the effect of

the self-attention module. Figure 3.7 shows the similarity between each region and the
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overall image representation for the “Mean” baseline and for our best model. In most

cases, the attention mechanism helps the model distribute its focus among the salient

objects of the scene instead of focusing only on small regions. In the first column of

Figure 3.7 the model is for instance able to focus on the salient giraffe. In the second

column, the attention helps focus on the cooking person rather than on the bottles in

the background. This re-weighting of the regions is key to obtain a rich and complete

representation of the depicted scene.

Caption Retrieval Image Retrieval

Model R@1 R@10 R@1 R@10

Mean 71.8 98.0 55.4 93.6

Mean + RR 74.3 98.7 58.7 94.4

1-Att 76.8 98.7 60.4 95.2

SMILE w/o RR 80.2 99.1 63.8 96.1

SMILE 82.2 99.5 66.6 96.6

Table 3.4: Self-attention with SMILE on cross-modal retrieval. Results of the comparison of

the proposed model against two baselines using a simpler attention mechanism. The

comparison is made on the cross-modal retrieval task on the validation set of MS-COCO.

Table 3.4 reports quantitative comparisons between our models and baselines on cross-

modal retrieval. In addition to “Mean”, we introduce the “1-Att” baseline where the

number of filters in the 1× 1 convolutional layer of the attention mechanism is reduced

to one W ∈ Rd×1. In this version, a single scalar attention weight is used per region

to compute the final image representation. First, we can see that any type of visual

attention mechanism (scalar or vectorial) is beneficial to image representation. Then,

the difference between a scalar attention model with one attention weight per region

(instead of one per region-channel pair) and our distributed approach is large, with

an absolute gain on caption retrieval of (3.4%,0.4%) on (R@1,R@10), and of (3.4%,0.9%)

for image retrieval. Finally, Table 3.4 also contains results showing the impact of the

re-ranking technique. Whether on the “Mean” baseline or as part of SMILE, it improves

retrieval results on all metrics.
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smile : understanding the attention mechanism To get a better under-

standing of the attention mechanism, we now perform an ablation study, removing

either the convolutional layer or the SoftMax function (Table 3.5). The results show that

both components of the attention contribute to the overall performance. They confirm

the importance of feature re-weighting before fusing them to a single representation.

Results without the convolutional layer show that making regions compete with each

other using only SoftMax is already beneficial compared to a simple averaging (“Mean”

baseline). On the other hand, when SoftMax is removed, the convolution layer is free

to learn any linear re-weighting of the features: While being better than the “Mean”

baseline, its overall performance remains lower than the full-fledged SMILE.

Capt. Retrieval Im. Retrieval

Model R@1 R@10 R@1 R@10

Mean 71.8 98.0 55.4 93.6

SMILE w/o Conv. 72.1 98.0 55.1 93.6

SMILE w/o Softmax 75.1 98.6 59.5 95.0

SMILE 80.2 99.1 63.8 96.1

Table 3.5: Self attention mechanism ablation study. Results of the ablation for the internal

components of the self-attention mechanism in SMILE. The comparison is made on

the cross-modal retrieval task on the validation set of MS-COCO.

To conclude the ablation experiments, we note that results in both Table 3.4 and

Table 3.5 demonstrate the strength of the distributed self-attention mechanism and the

need for a combination of convolution and softmax function.

3.4.3 Further analysis

With SMILE, we also obtain results that are similar to the very recently proposed

Saliency-guided Attention Network (SAN) [45]. Since their visual pipeline is not based

on bottom-up features but relies on an ensemble of networks (ResNext and Resnet)

and uses a 10-crop strategy to produce initial visual features, a complete comparison
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is difficult. Nonetheless, the main benefit of the SAN approach comes from its cross-

modal textual attention (Saliency guided Text Attention), while our approach only

relies on visual self-attention. For this reason we report in Table 3.6 a comparison

between our model and SAN without cross-modal attention. We note that our visual

representation outperforms SAN representation by a large margin. The two approaches

being orthogonal in their proposed innovation, we hope that they can be combined

toward new state-of-the-art results once SAN model is made available.

Cap. Retrieval Im. Retrieval

Model R@1 R@10 R@1 R@10

SAN w/o STA [45] 67.1 96.6 56.6 93.5

SAN [45] 85.4 99.0 69.1 97.2

SMILE w/o RR 79.4 99.1 63.7 95.8

Table 3.6: Comparing SMILE and SAN visual pipelines. Comparison of the proposed model

with a version of SAN devoid of its Saliency-guided Textual Attention (STA), this

architecture being similar to ours with its independent visual and textual pipelines.

SMILE outperforms the ablated SAN by a large margin on the cross-modal retrieval

task on MS-COCO test set, showing the strength of proposed visual representation.

model efficiency To quantify the efficiency of our SMILE architecture, we finally

benchmark the runtimes of existing approaches on cross-modal retrieval. Using the

evaluation protocol of MS-COCO dataset, we measure the inference time of the model to

encode images and texts and produce a final retrieval ranking on the whole validation

set. Model initialization and features loading time is ignored, every model is tested with

the same batch size of 128. For previous approaches, we use the official code available

online. The results in Table 3.7 show that our architecture outperforms existing ones by

a large margin, with a speed up of 6 times compared to VSRN [59] with its complex

visual reasoning module. Compared to SCAN [57], our model is 35 times faster, which

can be explained by the quadratic cost in the number of database images that SCAN

incurs for textual encoding. Note that, as of today, the code for the SAN [45] is not
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publicly available. However, since SAN relies on cross-modal attention, we expect a

complexity close to the one of SCAN [57].

Model Eval. Time

SCAN [57] 1606s

MTFN [90] 640s

VSRN [59] 266s

SMILE 45s

Table 3.7: Cross-modal retrieval speed for SMILE and other related systems. Evaluation times

in seconds on MS-COCO validation dataset for the 5 folds of 1k images and caption

retrieval. Our model is the fastest with a 6-time speedup w.r.t. the second fastest

(VSRN).

3.5 Conclusion

We have presented two novel VSE models that leverage recent architectures to pro-

duce rich descriptors for both images and texts. When compared to similar architectures,

they both achieve high performance on cross-modal retrieval.

Extensive ablation experiments show the contribution of each architecture element,

and provide insights into the proposed attention mechanism of SMILE and the selective

spatial pooling of BEAN.

Future improvement could come from the concept of attention. While we already

introduced it in the visual pipeline with SMILE, it could also benefit the textual repre-

sentation. Indeed a textual pipeline based on the recently introduced transformer [86]

might outperform the current one only using RNN. One caveat is that training very large

attention based model might require larger multimodal datasets to avoid overfitting.

Cross-modal attention is another form of attention that could also improve VSE. Using

cross-modal attention, meaning computing the representation of a sentence with respect

to an image (or vice versa) would intuitively produce a more accurate representation and

would help with disambiguation. While cross-modal attention was already proposed
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for VSE [57] it remains limited and costly to compute, the development of hardware

(faster Graphic Processing Unit (GPU) with larger memory) might allow the creation of

a more powerful mechanism.

Finally, both architectures are designed with localization in mind, one is weakly

supervised while the other one is spatially pre-trained. In the following chapter, we will

explore and evaluate their localization ability.
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Chapter abstract

In this chapter we explore the localization capability of multimodal embedding spaces.

While VSEs are most commonly used for image-text matching, it is possible to use the aligned

space to visually ground textual concept for free. Making the most of previously introduced

architecture in Chapter 3 we tackle visual grounding of text in two different ways. First

using the visual path based on space aware pooling mechanisms, we are able to produce

weakly supervised localization of concepts. Then, with the visual path using self attention on

bottom-up features, we output higher precision localization taking advantage of the spatial

supervision from pre-training. Both methods obtain competitive results on the pointing

game, and open interesting perspective for localization of unseen concepts.

The work in this chapter has led to two conference papers (one under review):

• Martin Engilberge, Louis Chevallier, Patrick Pérez, and Matthieu Cord. “Finding

beans in burgers: Deep semantic-visual embedding with localization.” In: Pro-

ceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018,

pp. 3984–3993
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• Martin Engilberge, Louis Chevallier, Patrick Pérez, and Matthieu Cord. “Semantic-

Visual Embedding with Distributed Self-Attention.” In: arXiv preprint. 2020

4.1 Introduction

In this chapter we aim at extending the application of VSE. In Chapter 3 we proposed

two new architectures and showed their good performance on image text matching. We

will now introduce a localization method for each of the architecture.

With the strong prevalence of deep learning in computer vision, most visual scene

understanding methods now rely on deep features extracted using off-the-shelf compo-

nents. BEAN and SMILE are no exception:

• BEAN uses a visual pipeline based on a ResNet, it can be trained and fine-tuned

in an end-to-end manner and doesn’t require spatial supervision.

• SMILE is using spatialized bottom-up features, pretrained using ground truth

localization of known objects.

We have shown that both architectures are competitive in the retrieval task, we will

now exploit the specificity of the two pipelines and propose localization modules for

each of them. Building on top of existing localization methods presented in Section 2.5

and taking advantage of the selective spatial pooling of BEAN, we will first introduce a

weakly supervised visual grounding of text. Leveraging the object regions of SMILE and

its efficient attention mechanism, we will then propose a partially supervised version of

visual grounding of text.

Section 4.2 will detail the inner working of both localization mechanisms. Then

Section 4.3 will contain qualitative visualization of the generated localization. Finally,

we will quantitatively evaluate the localization mechanisms using the “pointing game”

framework which has been recently introduced.
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4.2 Localization from visual semantic embedding

In this section we will explain the mechanisms used to derive localization from the

two models introduced in Chapter 3. Our first approach is weakly supervised and

takes advantage of space aware pooling mechanism to link spatial information to the

embedding space. The second mechanism leverages the supervised pre-training and

uses the embedding space to link pre-extracted regions to concepts.

4.2.1 BEAN: Weakly supervised localization

Given an image and the embedding of a text (or any point of the embedding space), we

propose a mechanism to compute a localization map, as demonstrated in Figure 4.2.

As described in Section 2.5, several works on weak supervised localization [20,

102] combine fully convolutional architectures with specific pooling mechanisms such

that the unknown object positions in the training images can be hypothesized. This

localization ability derives from the activation maps of the last convolutional layer.

Suitable linear combinations of these maps can indeed provide one heatmap per class.

Based on the pooling architecture of [20] which is included in our system (described

in Section 3.2.2) and without relying on additional training procedures, we derive the

localization mechanism for our semantic-visual embedding. Let’s remind that in our

case, the number of feature maps is arbitrary since we are not training on a classification

task but on a cross-modal matching one. Yet, one can imagine several ways to leverage

these maps to try and map an arbitrary vector of the joint embedding space into an

arbitrary input image. When this vector is the actual embedding of a word or sentence,

this spatial mapping should allow localizing the associated concept(s) in the image, if

present. Ideally, a well-trained joint embedding should allow such localization even for

concepts that are absent from the training captions.

To this end, we propose the following localization process (Figure 4.1). Let I be an

image and G its associated D′ feature maps (Equation 3.5). This stack is turned into a

stack G′ ∈ Rw×h×d of d heatmaps using the linear part of the projection layer pθ2 :

G′[i, j, :] = AG[i, j, :], ∀(i, j) ∈ J1, wK× J1, hK, (4.1)

which is a 1× 1 convolution.
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Figure 4.1: From text embedding to visual localization with BEAN. Given the feature maps G

associated to an image by our semantic-visual architecture and the embedding of

a sentence, a heatmap can be constructed: Learned projection matrix A serves as a

1× 1 convolution; Among the d maps thus generated, the k ones associated with

the largest among the d entries of v are linearly combined. If the sentence relates

to a part of the visual scene, like “two glasses” in this example, the constructed

heatmap should highlight the corresponding location. Circled blue dot indicates the

heat maximum.

In other words, the pooling is removed. Bias and normalization being of no incidence

on the location of the peaks, they are ignored.

Given v ∈ Rd the embedding of a word or sentence (or any unit vector in the

embedded space) and K(v) the set of the indices of its k largest entries, the 2D heatmap

H ∈ Rw×h associated with the embedded text v in image I is defined as:

H = ∑u∈K(v)

∣∣v[u]∣∣×G′[:, :, u]. (4.2)

The number of feature maps from G′ that are used to produce the localization map

was set through cross-validation to k = 180 (out of 2400). We keep this parameter fixed

for all presented results.

In this thesis, the heatmaps from the BEAN model will be shown in false colors,

overlaid on the input image after suitable resizing, as illustrated in Figure 4.1 and

Figure 4.2.
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Figure 4.2: Concept localization with BEAN semantic-visual embedding. Not only does our

deep embedding allows cross-modal retrieval, but it can also associate to an image,

e.g., the hamburger plate on the left, a localization heatmap for any text query, as

shown with overlays for three text examples. The circled blue dot indicates the

highest peak in the heatmap.

4.2.2 SMILE: Object region to localization using VSE

As described in Section 2.5, several works already proposed to use VSE to ground textual

concepts in the visual space [89]. In this section we present a localization mechanism

using the object region coming from the proposed model based on faster R-CNN

described in Section 3.2.3.

Grounding semantic concepts in the visual domain is a common application of

joint embedding models. Being based on spatialized bottom-up features, our SMILE

visual pipeline lends itself naturally to this usage. Indeed, the proposed self-attention

mechanism allows us to retain the localized information until the joint embedding space

is reached.

Leveraging the region features in G, we use the joint embedding to score the relevance

of each region with respect to a given concept. Given an arbitrary concept (e.g., a word

or a sentence) with associated representation z in Rd in the joint embedding space, the

relevance of the R regions of interest in the input image is computed as follows:

L[r] = 〈z, G[:, r]〉, ∀r ∈ J1, RK. (4.3)

As illustrated in Figure 4.3 the final visual grounding of concept z in image I can take

two forms: The top-scoring region according to L (represented by a red bounding box)

and a dense map obtained by associating each pixel with the top score among regions it

belongs to.
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In this thesis, such localization maps will be represented as a transparency layer

(the more transparent the more relevant) overlaid on the input image as illustrated in

Figure 4.3 and Figure 4.6.

Figure 4.3: Free-form language localization using the SMILE semantic-visual embedding.

The rich visual representation produced by our distributed self-attention mech-

anism retains fine-grained details. This is useful for instance for visual grounding

of text. In this example our model is able to distinguish the car from the truck and,

when the “security” adjective is used, the correct vehicle is localized. Relying on

multiple overlapping regions, the model is capable of subtle grounding, producing

for instance two distinct localizations for the woman and for the couple. The red

bounding box shows the top-scoring region for the overlaid text. The transparency

map indicates pixel-level attention built out of all regions’ scores.

4.3 Experiments

In the following section, we first describe the datasets used to evaluate the two

previously introduced localization mechanisms, we then report qualitative and quantita-

tive results on visual grounding. Finally, we further test our model with comparison to

simpler baselines and ablation studies.

For the localization experiments, the model is trained only on the MS-COCO dataset

[60]. We used the train validation split proposed in [47]. We complemented the MS-COCO dataset

with the annotations from Visual Genome dataset [53] to get the localization ground

truth that is needed for evaluation of the visual grounding.

We are evaluating two localization mechanisms leveraging the two different models

proposed in Section 4.2. To easily distinguish both, all visualization followed the same



4.3 experiments 79

color code: Colored heatmaps are produced by the weekly supervised BEAN model.

All the white heatmap with red top scoring regions are coming from the SMILE model.

4.3.1 The pointing game

Figure 4.4: Pointing game illustration. The left box contains an example images from the

Visual Genome dataset, overlaid and underneath are the sentences associated with

regions of the image. The two right images illustrate correct and incorrect localization

example in the pointing game. The red dot corresponds to the predicted localization.

Localization is considered correct if the pointwise localization for a query belongs to

the ground truth bounding box associated.

We evaluate quantitatively our localization modules with the pointing game defined

by [94]. This task relies on images that are present both in MS-COCO val 2014 dataset

and in Visual Genome dataset. The data contains 17,471 images with 86,5582 text region

annotations (a bounding box associated with a caption). The task consists in “pointing”

the region annotation in the associated image. If the returned location lies inside the

ground truth bounding box, it is considered as a correct detection, a negative one

otherwise. Figure 4.4 shows an example of the pointing game, the annotation used

and a correct and incorrect localization. When our system produces a localization map,

the location of its maximum is used as output for the evaluation. When our system

produces region scores, the center of the maximum scoring region is used as output for

the evaluation.
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Figure 4.5: Pointing game examples using BEAN. Images from the Visual Genome dataset over-

laid with the heatmap localizing the input text according to our weakly supervised

system. The white box is the ground-truth localization of the text and the cirled blue

dot marks the location predicted by our model for this text. The first four predictions

are correct, unlike the last two ones. In the last ones, the heatmap is nonetheless

active inside the ground-truth box.

The quantitative results are reported in Table 4.1 and some visual examples are

shown in Figure 4.5. We add to the comparison a baseline that always outputs the

center of the image as localization, leading to a surprisingly high accuracy of 19.5%.

Our weakly supervised model, with an accuracy of 33.8%, offers absolute (resp. relative)

gains of 9.4% (resp. 38%) over [94] and of 14% (resp. 73%) over the trivial baseline.

Our SMILE model, with an accuracy of 48.5%, offers absolute gains of 14.7% over

the weakly supervised one and of 24.1% over [94]. Note that these two methods are

not spatially supervised like SMILE (Faster R-CNN being pretrained using supervised

annotations). For the sake of fairness, we also provide a baseline using the bottom-up

features. In this baseline, “Mean”, the attention mechanism is removed and the image

representation is computed by averaging G as follows x = G1
R . As shown in Table 4.1,

our model outperforms the “Mean” baseline by an absolute 6.2%.
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Model Accuracy

Unsupervised model

center baseline [23] 19.5

Linguistic structure [94] 24.4

BEAN 33.8

Bottom-up features

Mean 42.3

SMILE 48.6

Table 4.1: Pointing game results. Both our architectures obtain competitive results and outper-

form previous non-supervised approaches. Our SMILE model also outperforms a

supervised baseline (’Mean’) using the same bottom-up features.

Qualitative localization examples are also provided in Figure 4.6 and Figure 4.7. The

model is able to localize any sort of textual query, from single words such as “elephant”

or “cake” to more complex sentences such as “People on the station platform”. In

addition, the model can handle multiple instances of the same object class. For instance,

it localizes perfectly the three candles and the trees in the second and third rows of

Figure 4.6.

4.3.2 Further analysis

towards zero-shot localization The good performance we obtain in the

pointing game highlights the ability of our system to localize visual concepts based

on their embedding in the learned joint space. Going one step further, we conducted

similar experiments with images from the web and concepts that were checked not to

appear in any of the training captions, see Figure 4.8.
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Figure 4.6: Concept localization with SMILE. Given a text query (overlay), the top-scoring

region of the image is identified (red box) and pixel-wise scores are derived from all

regions’ scores (transparency layer).

4.4 Conclusion

In this chapter we have shown how BEAN and SMILE can be used to localize any

concept represented in the join embedding space. The localization based on BEAN is

weakly supervised and take advantage of the spatial information preserved by the fully

convolutional architecture. The localization from SMILE is more accurate but requires a

spatially supervised object detector.

Overall the results obtained by both models confirmed the benefit of using a VSE

for localization. Indeed the possibility to visually ground any concept opens multiple

opportunity for few or zero shot learning. In particular results in Figure 4.8 which
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Figure 4.7: Localization examples with BEAN. The first column contains the original image,

the next columns show as overlays the heatmaps provided by the localization module

of our system for different captions (superimposed). In each image the circled blue

dot marks the maximum value of the heatmap.

showed the ability of the localization mechanism to generalize to unseen concepts truly

show the benefit of the combination of the textual and the visual modality.

With the increase in computer power, we could hope for a combination of both

SMILE and BEAN architecture, the object detector could serve as a first rough local-

ization while the weakly supervised localization module of BEAN could refine the

localization using the convolutional activation map of the selected region.
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Figure 4.8: Toward zero-shot localization using BEAN. The first three rows show the ability to

differentiate items according to their colors, even if, as in third example, the colors are

unnatural and the concept has not been seen at training. This example, and the two

last ones could qualify as “zero-shot localization” as damson, caracal, and waxwing

are not present in MS-COCO train set.
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Chapter abstract

We have seen that VSEs are most commonly trained with a contrastive loss. In the retrieval

context, the triplet loss is a good surrogate for the recall metrics. We are interested in

finding a better one, not only for recall but for all ranking based metric e.g. mean Average

Precision (mAP) and Spearman correlation.

In this chapter, we introduce a new method to learn approximations of non-differentiable

ranking objective functions. Our approach is based on a deep architecture that approximates

the sorting of arbitrary sets of scores. It is trained virtually for free using synthetic data. This

85



86 ranking loss function

sorting deep (SoDeep) net can then be combined in a plug-and-play manner with existing

deep architectures. We demonstrate the interest of our approach in three different tasks that

require ranking: Cross-modal text-image retrieval, multi-label image classification and visual

memorability rankings. Our approach yields very competitive results on these three tasks,

which validates the merit and the flexibility of SoDeep as a proxy for sorting operation in

ranking-based losses.

The work in this chapter has led to the publication of a conference paper:

• Martin Engilberge, Louis Chevallier, Patrick Pérez, and Matthieu Cord. “SoDeep:

a Sorting Deep net to learn ranking loss surrogates.” In: Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition. 2019, pp. 10792–10801
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5.1 Introduction

The proposed VSE models in Chapter 3 were trained with a hard negative contrastive

loss (See Section 3.2.4). In this last chapter, we take a step back and explore other

possibilities of loss function for VSE and more generally for any ranking based loss

function.

In Section 2.1 we explained how the loss function is critical to formalize a task

during the training of a model. However machine learning tasks are often evaluated

and compared using metrics which differ from the objective function used during

training. The choice of an evaluation metric is intimately related to the definition of

the task at hand, even sometimes to the benchmark itself. For example, accuracy seems

to be the natural choice to evaluate classification methods, whereas the choice of the

objective function is also influenced by the mathematical properties that allow a proper

optimization of the model. For classification, one would typically choose the cross

entropy loss – a differentiable function – over the non-differentiable accuracy. Ideally,

the objective function used during training would be identical to the evaluation metric.

However, standard evaluation metrics are often not suitable as training objectives for

lack of differentiability to start with. This results in the use of surrogate loss functions

that are better behaved (smooth, possibly convex). Unfortunately, coming up with good

surrogate functions is not an easy task.

In this chapter, we focus on the non-differentiability of the evaluation metrics used

in ranking-based tasks such as recall, mean average precision and Spearman correlation.

Departing from prior art on building surrogate losses for such tasks, we adopt a simple,

yet effective, learning approach: Our main idea is to approximate the non-differentiable

part of such ranking-based metrics by an all-purpose learnable deep neural network. In

effect, this architecture is designed and trained to mimic sorting operations. We call it

SoDeep. SoDeep can be added in a plug-and-play manner on top of any deep network

trained for tasks whose final evaluation metric is rank-based, hence not differentiable.

The resulting combined architecture is end-to-end learnable with a loss that relates

closely to the final metric.
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We discuss in Section 5.2 the related works on direct and indirect optimization of

ranking-based metrics, and position our work accordingly. In Section 5.3 we present the

SoDeep approach. We show in particular how a “universal” sorting proxy suffices to

tackle standard rank-based metrics, and present different architectures to this end. More

details on the system and its training are reported in Section 5.5, along with various

experiments. Finally, in Section 5.6 we discuss the benefit and limitation of our approach

and future perspectives.

5.2 Related works

Many data processing systems rely on sorting operations at some stage of their pipeline.

It is the case also in machine learning, where handling such non-differentiable, non-local

operations can be a real challenge [69]. For example, retrieval systems require to rank a

set of database items according to their relevance to a query. For sake of training, simple

loss functions that are decomposable over each training sample have been proposed as

for instance in [38] for the area under the ROC curve. Recently, some more complex

non-decomposable losses (such as the Average Precision (AP), Spearman coefficient, and

normalized discounted cumulative gain (nDCG) [7]), which present hard computational

challenges, have been proposed [68].

mean average precision optimization Our work shares the high level goal

of using ranking metrics as training objective function with many works before us.

Several works studied the problem of optimizing average precision with support vector

machines [46, 101] and other works extended these approaches to neural networks [5,

18, 68]. To learn rank, the seminal work [46] relies on a structured hinge upper bound to

the loss. Further works reduce the computational complexity [68] or rely on asymptotic

methods [83]. The focus of these works is mainly on the relaxation of the mean average

precision, while our focus is on learning a surrogate for the ranking operation itself such

that it can be combined with multiple ranking metrics. In contrast to most ranking-based

techniques, which have to face the high computational complexity of the loss augmented

inference [46, 68, 83], we propose a fast, generic, deep sorting architecture that can be

used in gradient-based training for rank-based tasks.



5.3 sodeep approach 89

application of ranking based metrics Ranking is commonly used in eval-

uation metrics. In this thesis, our focus is on cross-modal retrieval [27, 30, 47, 51, 63],

where recall is the standard evaluation. We also explore other ranking problems such as

image classification [19, 26] and object recognition which are both evaluated with mean

average precision in the multi-label case. Ordinal regression [12] is evaluated using

Spearman correlation.

existing surrogate functions Multiple surrogates for ranking exist. Using

metric learning to do retrieval is one of them. This popular approach avoids the use of

the ranking function altogether. Instead, pairwise [96], triplet-wise [8, 91] and list-wise

[6, 28] losses are used to optimize distances in a latent space. The cross-entropy loss is

typically used for multi-label and multi-class classification tasks.

5.3 SoDeep approach

Rank-based metrics such as recall, Spearman correlation and mean average precision can

be expressed as a function of the rank of the output scores. The computation of the rank

being the only non-differentiable part of these metrics, we propose to learn a surrogate

network that approximates directly this sorting operation. Using the approximation of

the rank, we can then express any rank based loss function to train a DNN. Figure 5.1

shows an example of the SoDeep loss in application.

5.3.1 Learning a sorting proxy

Let y ∈ Rd be a vector of d real values and rk the ranking function so that rk(y) ∈
{1 · · · d}d is the d-permutation vector containing the rank for each variable in y,

i.e. rk(y)i is the rank of yi among the yj’s. We want to design a deep architecture

fΘB that is able to mimic this sorting operator. The training procedure of this DNN is

summarized in Figure 5.2. The aim is to learn its parameters, ΘB, so that the output of

the network is as close as possible to the output of the exact sorting.

Before discussing possible architectures, let’s consider the training of this network,

independent of its future use. We first generate a training set by randomly sampling N
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Figure 5.1: Overview of SoDeep, the proposed end-to-end trainable deep architecture to ap-

proximate non-differentiable ranking metrics. A pre-trained differentiable sorter

(DNN ΘB) is used to convert into ranks the raw scores y given by the model (DNN ΘA)

being trained with a collection of inputs x. A loss is then applied to the predicted

rank r̂ and the error can be back propagated through the differentiable sorter and

used to update the weights ΘA.

input vectors y(n) and we compute through exact sorting the associated ground-truth

rank vectors r(n) = rk(y(n)). We then classically learn the DNN fΘB by minimizing a L1

loss between the predicted ranking vector r̂ = fΘB(y) and the ground-truth rank r over

the training set:

min
ΘB

N

∑
n=1

∥∥∥rk(y(n))− fΘB(y
(n))
∥∥∥

1
. (5.1)

We explore in the following different network architectures and we explain how the

training data is generated.

sorter architectures We investigate two types of architectures for our differen-

tiable sorter fΘB . One is a recurrent network and the other one a convolutional network,

each capturing interesting aspects of standard sorting algorithms:

• The recurrent architecture in Figure 5.3a consists of a bi-directional LSTM [81] followed

by a linear projection. The bi-directional recurrent network creates a connection

between the output of the network and every input, which is critical for ranking

computation. Knowledge about the whole sequence is needed to compute the true

rank of any element.
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Figure 5.2: Training a differentiable sorter. Given a score vector y we learn the parameters ΘB

of a DNN such that its output r̂ approximates the true rank vector rk(y). The model

is trained using gradient descent and an L1 loss. Once trained, fΘB can be used as a

differentiable surrogate of the ranking function.

(a) Architecture of LSTM sorter. (b) Architecture of CNN sorter.

Figure 5.3: SoDeep architectures. The sorter takes a vector of raw score y ∈ Rd as input and

outputs a vector r̂ ∈ Rd. Two architectures are explored, one recurrent (a), the other

one, convolutional (b). Both architectures present a last affine layer to get a final

projection to a vector r̂ in Rd. Note that even if it is not explicitly enforced, r̂ will try

to mimic as close as possible the vector of the ranks of the y variables.

• The convolutional architecture in Figure 5.3b consists of 8 convolutional blocks, each of

these blocks being a one-dimensional convolution followed by a batch normalization

layer [43] and a ReLU activation function. The sizes of the convolutional filters are

chosen such that the output of the network contains as many channels as the length

of the input sequence. Convolutions are used for their local property: indeed, sorting

algorithms such as bubble sort [29] only rely on a sequence of local operations.

The intuition is that a deep enough convolutional network, with its cascaded local

operations, should be able to mimic recursive sorting algorithms and thus to provide

an efficient approximation of ranks.

We will further discuss the interest of both types of SoDeep block architectures in the

experiments.
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training data SoDeep module can be easily (pre)trained with supervision on

synthetic data. Indeed, while being non-differentiable, the ranking function rk can

be computed with classic sorting algorithms. The training data consists of vectors of

randomly generated scalars, associated with their ground-truth rank vectors. In our

experiments, the numbers are sampled from different types of distributions:

• Uniform distribution over [−1, 1];

• Normal distribution with µ = 0 and σ = 1;

• Sequence of evenly spaced numbers in a uniformly drawn random sub-range of

[−1, 1];

• Random mixtures of the previous distributions.

While the differentiable sorter can be trained ahead of time on a variety of input

distributions, as explained above, there might be a shift with the actual score distribution

that the main network fΘA will output for the task at hand. This shift can reduce

naturally during training, or an alignment can be explicitly enforced. For example, fΘA

can be designed to output data in the interval used to learn the sorter, with the help of

bounded functions such as cosine similarity.

5.3.2 SoDeep Training and Analysis

In this section we detail the way we train our differentiable sorter deep block using

only synthetic data. We also present a comparison between the different models based

on CNNs and on LSTM recurrent nets and with our baseline inspired from pairwise

comparisons.

The proposed SoDeep models based on BI-LSTM and CNNs are trained on synthetic

pairs of scores and ranks generated on the fly according to the distributions defined

above.

For convenience we call an epoch as going through 100 000 pairs. The training is done

using the Adam optimizer [49] with a learning rate of 0.001 which is halved every 100

epochs. Mini-batches of size 512 are used. The model is trained until the loss values

stop decreasing and are stable.
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a handcrafted sorting baseline We add to our trainable SoDeep blocks a

baseline that does not require any training. Inspired by the representation of the ranking

problem as a matrix of pairwise ordering in [101], we build a handcrafted differentiable

sorter fh using pairwise comparisons.

A sigmoid function parametrized with λ scalar is used as a binary comparison function

between two scalars a and b as:

σcomp(a, b) =
1

1 + e−λ(b−a)
. (5.2)

Indeed, if a and b are separated by a sufficient margin, σcomp(a, b) will be either 0 or 1.

The parameter λ is used to control the precision of the comparator.

This function may be used to approximate the relative rank of two components yi

and yj in a vector y: σcomp(yi, yj) will be close to 1 if yi is (significantly) smaller than

yj, 0 otherwise. By summing up the result of the comparison between yi and all the

other elements of the vector y, we form our ranking function fh. More precisely, the

rank fh(y, i) for the i-est element of y is expressed as follows:

fh(y, i) = ∑
j:j 6=i

σcomp(yi, yj). (5.3)

The overall precision of the handcrafted sorter can be controlled by the hyper

parameter λ. The value of lambda is a trade off between the precision of the predicted

rank and the efficiency when back-propagating through the sorter. This trade off is

illustrated in Figure 5.4, when the sigmoid function takes value close to one or zero, its

derivative is almost zero. We experimented with variable λ depending on the standard

deviation of y but didn’t obtained noticeable improvement compared to using a fixed

value. Further experiments will use λ = 10.

sorter performance comparison Table 5.1 contains the loss values of the

two different trained sorters and the handcrafted one on a generated test set of 10 000

samples. The LSTM based sorter is the most efficient, outperforming the CNN and the

handcrafted sorters.

The performance of the CNN sorter slightly below the LSTM-based one can be

explained by local behaviour of the CNNs, requiring a more complex structure to be

able to rank elements.
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Figure 5.4: Sigmoid function and its derivative.The red curve corresponds to the sigmoid

function used in Equation 5.2, the blue curve is its derivative. To use the sigmoid as a

differentiable binary comparator the difference between the value a and b should be

close to the range ±[4, 6] where the value of sigmoid function is almost 0 or 1 while

its derivative is not 0.

In Figure 5.5 we compare CNN sorters with respect to their number of layers. From

these results, we choose to use 8 layers in our CNN sorter since the performance seems

to saturate once this depth has been reached. A possible explanation of this saturation

is that the relation between the depth of the network and the input dimension (d = 100

here) is logarithmic.

further analysis The ranking function being non-continuous is non-differentiable,

the rank value is jumping from one discrete value to another. We design an experiment

to visualize how the different types of sorter behave at these discontinuities. Starting

from a uniformly sampled vector y′ ∈ R100 of raw scores in the range [−1, 1], we com-

pute the ground truth rank rk(y′)1 and the predicted rank fΘB(y
′)1 of the first element

y′1 while varying this element y′1 from -1 to 1 in increments of 0.001. The plot of the

predicted ranks can be found in Fig. 5.6. The blue curve corresponds to the ground-truth

rank where non-continuous steps are visible, whereas the curves for the learned sorters

(orange and green) are a smooth approximation of the ground-truth curve.
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Sorter model L1 loss

Handcrafted sorter 0.0350

CNN sorter 0.0120

LSTM sorter loss 0.0033

Table 5.1: Performance of the sorters on synthetic data. Ranking performance of the sorter on

the synthetic dataset. Among the learned sorters the LSTM one is the most efficient.

In Figure 5.7 we compare our SoDeep against previous approaches optimizing

structured hinge upper bound to the mAP loss. We followed the protocol described in

[83] for their synthetic data experiments. Our sorters using the loss LmAP defined in

Equation 5.9 are compared to a re-implementation of the Hinge-AP loss proposed in

[46]. The results in Figure 5.7 show that our approach with the LSTM sorter (blue curve)

gets mAP scores similar to [46] (purple curve) while being generic and less complex.

From the learned sorters, the LSTM architecture is the one performing best on

synthetic data (Table 5.1). In addition, its simple design and small number of hyper-

parameters make it straightforward to train. The CNN architecture while not being as

efficient, uses a smaller number of weights and is 1.7 time faster. Further experiments

will use the LSTM sorter unless specified otherwise.

5.4 Differentiable Sorter based loss functions

Rank-based metrics are used for evaluating and comparing learned models in a number

of tasks. Recall is a standard metric for image and information retrieval, mean Average

Prediction (mAP) for classification and recognition, and Spearman correlation for ordinal

prediction. This type of rank-based metrics are non-differentiable because they require

to transition from the continuous domain (score) toward the discrete domain (rank).

As presented in Figure 5.1, we propose to insert a pre-trained SoDeep proxy block

fΘB between the deep scoring function fΘA and the chosen rank-based loss. We show in
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Figure 5.5: Performance of the CNN sorter with respect to the depth of the CNN. Value of the

cost function during the training of multiple CNN sorters with a number of layers

varying from 2 to 10. The model performances saturate for models with 8 layers or

more.

the following how mAP, Spearman correlation and recall can be expressed as functions

of the rank and combined with SoDeep accordingly.

In the following we assume a training set of annotated pairs {(xi, y∗i )}M
i=1 for the

task at hand. A group B of d training examples among them yields a prediction

vector y(ΘA) = [ fΘA(xi)]i∈B and an associated ground-truth score vector y∗ = [y∗i ]i∈B

(Figure 5.1).

5.4.1 Spearman correlation

For two vectors y and y′ of size d, corresponding to two sets of d observations, the

Spearman correlation [17] is defined as:

rs = 1− 6‖rk(y)− rk(y′)‖2
2

d(d2 − 1)
. (5.4)
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Figure 5.6: Sorter behaviour analysis. Given a synthetic vector y′ of raw scores in the range

[−1, 1] of size 100, we plot the rank of its first element y′1 when the said value is

linearly interpolated between -1 and 1. The x-axis represents the value y′1, and the

y-axis is its corresponding rank.

Maximizing w.r.t. parameters ΘA the sum of Spearman correlations Equation 5.4

between ground truth and predicted score vectors over N subsets of training examples

amounts to solving the minimization problem:

min
ΘA

N

∑
n=1

∥∥∥rk(y(n))− rk(y∗(n))
∥∥∥2

2
, (5.5)

with the loss not being differentiable.

Using now our differentiable proxy instead of the rank function, we can define the

new Spearman loss for a group B:

LSPR(ΘA,B) =
N

∑
n=1

∥∥∥ fΘB(y(ΘA)
(n))− rk(y∗(n))

∥∥∥2

2
. (5.6)

Training will typically minimize it over a large set of groups. Note that here the optimiza-

tion is done over ΘA, knowing that SoDeep block fΘB has been trained independently

on specific synthetic training data. Optionally, the block can be fine-tuned along the

way, hence minimizing w.r.t. ΘB as well.
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Figure 5.7: Synthetic experiment on mAP optimization. Comparison of the proposed sorter

and the previous approaches.

5.4.2 Mean Average Precision (mAP)

Multilabel image classification is often evaluated using mAP, a metric from information

retrieval. To define it, each of the C classes is considered as a query over the d elements

of the datasets. For class c, denoting y∗c the d-dimensional ground-truth binary vector

and yc the vector of scores for this class, the average precision (AP) for the class is

defined as [101] :

AP(yc, y∗c ) =
1

rel ∑
j:y∗c (j)=1

Prec(j), (5.7)

where rel = |j : y∗c (j) = 1| is the number of positive items for class c and precision for

element j is defined as:

Prec(j) =
|{s ∈ S : y∗c (s) = 1}|

rk(yc)j
, (5.8)

with S the set of indices of the elements of yc larger than yc(j).

Minimizing rk(y)j for all j from class c (i.e., those verifying y∗c (j) = 1) will be used as

a surrogate of the maximization of the AP over predictor’s parameters ΘA.
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The mAP is obtained by averaging AP over the C classes. Replacing the rank function

by its differentiable proxy, the proposed mAP-based loss reads:

LmAP(ΘA,B) =
C

∑
c=1
〈 fΘB(yc), y∗c 〉. (5.9)

5.4.3 Recall at K

Recall at rank k is often used to evaluate retrieval tasks. In the following we assume

a training set {xi}M
i=1 for the task at hand. A group B of d training examples among

them yields a d× d prediction matrix Y(ΘA) = [ fΘA(xi)]i∈B representing the scores of

all pairwise combinations of training examples in B. In other words, the i-th column of

this matrix, Y[i] = fΘA(xi), provides the relevance of other vectors in the group w.r.t. to

query xi.

This matrix being given, recall at K is defined as:

R@K(Y) =
1
d

d

∑
i=1


1, if rk(Y[i])p < K

0, otherwise,

(5.10)

with p the index of the unique positive entry in Y[i], a single relevant item being

assumed for query xi.

Once again, our sorter enables a differentiable implementation of this measure.

However, we could not obtain conclusive results yet, possibly due to the batch size

limiting the range of the summation. We found, however, an alternative way to leverage

our sorting network. It is based on the use of the “triplet loss”, a popular surrogate for

recall. We propose to apply this loss on ranks instead of similarity scores, making it

only dependent on the ordering of the retrieved elements. The triplet loss on the rank

can be expressed as follows:

loss(Y[i], p, c) = max
{

0, α + fΘB(Y[i])p − fΘB(Y[i])c
}

, (5.11)

where p is defined as above (the positive example in the triplet, given anchor query

xi) and c is the index of a negative (irrelevant) example for this query. The goal is to

minimize the rank of the positive pair with score Y[i]p such that its rank is lower than

the rank of the negative pair with score Y[i]c by a margin of α.
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The complete loss is then expressed over all the elements of B in its hard negative

version as:

LREC(ΘA,B) = 1
d ∑

i∈B
max

c 6=p,c 6=i
loss(Y[i], p, c). (5.12)

In Equation 5.4, (5.7) and (5.10), the metrics are expressed in function of the non-

differentiable rank function rk. Leveraging our differentiable surrogate allows us to

design a differentiable loss function for each of these metrics, respectively Equation 5.6,

(5.9) and (5.12).

5.5 Experimental Results

We present in this section several experiments to evaluate our approach. We evaluate

the SoDeep combined with deep scoring functions fΘB . The loss functions expressed

in Equation 5.6, Equation 5.9 and Equation 5.12 are applied to three different tasks:

memorability prediction, cross-modal retrieval, and object recognition.

Our method is benchmarked on three tasks. Each one of these tasks focuses on

a different rank based loss function. Cross-modal retrieval will be used to test recall

evaluation metrics, memorability prediction will be used for Spearman correlation and

image classification will be used for mean average precision.

As explained in Figure 5.3.1, a shift in distribution might appear when using sorter-

based loss. To prevent this, a parallel loss can be used to help domain alignment. This

loss can be used only to stabilize the initialization or kept for the whole training.

5.5.1 Spearman Correlation: Predicting Media Memorability

The media memorability prediction task [12] is used to test the differentiable sorter with

respect to the spearman correlation metrics. Examples of elements of the dataset can

be found in Figure 5.8. Given a 7-second video the task consists in predicting the short

term memorability score. The memorability score reflects the probability of a video

being remembered.
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Figure 5.8: Media memorability dataset. Frames with low and high memorability scores coming

from 4 different videos of the memorability dataset [12]. The memorability scores are

overlaid on top of the images.

The task is originally on video memorability. However the model used here is pre-

trained on images, therefore 7 frames are extracted from each video and are associated

with the memorability score of the source video. The training is done on pairs of frame

and memorability score. During testing the predicted score of the 7 frames of a video

are averaged to obtain the score per video. The dataset contains 8000 videos (56000

frames) for training and 2000 videos for testing. This training set is completed using

LaMem dataset [48] adding 60 000 (image, memorability) pairs to the training data.

architectures and training The regression model consists of a feature extrac-

tor combined with a two layers MLP [77] regressing features to a single memorability

score. We use two pretrained nets to extract features: the Resnet-34 [37] and the BEAN

visual path introduced in Section 3.2.

We use the loss LSPR defined in Equation 5.6 to learn the memorability model. The

training is done in two steps. First, for 15 epochs only the MLP layers are trained

while the weights of the feature extractor are kept frozen. Second, the whole model

is fine-tuned. The Adam optimizer [49] is used with a learning rate of 0.001 which is

halved every 3 epochs. To help with domain adaptation, our loss is combined with an

L1 loss for the first epoch.

results In Table 5.2, we compare the impact of the learned loss over two archi-

tectures. For both models we defined a baseline using a L2 loss. On both architectures
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Single model Spear. cor. test

Baseline [11] 46.0

Image only [36] 48.8

R34 + MSE loss 44.2

R34 + SoDeep loss 46.6

BEAN + MSE loss 48.6

BEAN + SoDeep loss 49.4

Table 5.2: Media Memorability prediction results. Our proposed loss function and architecture

outperform the state-of-the-art system [36] by 0.6 pt. The last 4 lines show the benefit

of our SoDeep loss function compared to a MSE loss on two different architectures:

the first one uses ResNet 34 to extract visual features, while the second one uses the

pre-trained BEAN visual path.

the proposed loss function achieves higher Spearman correlation by 2.4 points on the

Resnet model and 0.8 points on the semantic embedding model. These are state of the

art results on the task with an absolute gain of 0.6 pt. The model is almost on par (-0.3

pt) with an ensemble method proposed by [36] that is using additional textual data.

sorter comparison The memorability prediction is also used to compare the

different types of sorters presented so far. Fixing the model and the hyper parameters, 4

models are trained with 4 different types of loss. The losses based on the LSTM sorter,

the CNN sorter and the handcrafted sorter obtained respectively a Spearman correlation

of 49.4, 46.6, 45.7, and the L1 loss gives a correlation of 46.2. These results are consistent

with the result on synthetic data, with the LSTM sorter performing the best, followed

by the CNN and handcrafted ones.

5.5.2 Mean Average precision: Image classification

The VOC 2007 [26] object recognition challenge is used to evaluate our sorter on a task

using the mean average precision metric. We use an off-the-shelf model [19]. This model
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is a fully convolutional network, combining a Resnet-101 [37] with advanced spatial

aggregation mechanisms.

To evaluate the loss LmAP defined in Equation 5.9 two versions of the model are

trained: A baseline using only multi-label soft margin loss, and another model trained

using the multi-label soft margin loss combined with LmAP.

Rows 3 and 4 of Table 5.3 show the results obtained by the two previously described

models. Both models are below the state-of-the-art. However the use of the rank loss is

beneficial and improves the mAP by 0.8 pt compared to the model using only the soft

margin loss.

Loss mAP

VGG 16 [82] 89.3

WILDCAT [19] 95.0

WILDCAT* 93.2

WILDCAT* + SoDeep loss 94.0

Table 5.3: Object recognition results. Model marked by (*) are obtained with code available

online: https://github.com/durandtibo/wildcat.pytorch

5.5.3 Recall@K: Cross-modal Retrieval

The last benchmark used to evaluate the differentiable sorter is the cross-modal retrieval.

Starting from images annotated with text, we train a model to produce rich features for

both image and text that live in the same embedding space. Similarity in the embedding

space is then used to evaluate the quality of the model on the cross-modal retrieval task.

Our approach is evaluated on the MS-COCO dataset [60] using the rVal split proposed

in [47]. The dataset contains 110k images for training, 5k for validation and 5k for

testing. Each image is annotated with 5 captions.

Given a query image (resp. a caption), the aim is to retrieve the corresponding

captions (resp. image). Since MS-COCO contains 5 captions per image, recall at r (“R@r”)

https://github.com/durandtibo/wildcat.pytorch


104 ranking loss function

for caption retrieval is computed based on whether at least one of the correct captions

is among the first r retrieved ones. The task is performed 5 times on 1000-image subsets

of the test set and the results are averaged.

We use the BEAN model introduced in Chapter 3. It is a two-paths multimodal

embedding approach that leverages the latest neural network architecture. The visual

pipeline is based on a Resnet-152 and is fully convolutional. The textual pipeline is

trained from scratch and uses a Simple Recurrent Unit (SRU) [58] to encode sentences.

The model is trained using the loss LREC defined in Equation 5.12 instead of the triplet

based loss.

caption retrieval image retrieval

model R@1 R@5 R@10 Med. r R@1 R@5 R@10 Med. r

Emb. network [87] 54.9 84.0 92.2 - 43.3 76.4 87.5 -

BEAN 69.8 91.9 96.6 1 55.9 86.9 94.0 1

GXN (i2t+t2i) [35] 68.5 - 97.9 1 56.6 - 94.5 1

BEAN + SoDeep loss 71.5 92.8 97.1 1 56.2 87.0 94.3 1

Table 5.4: Cross-modal retrieval results on MS-COCO. Using the proposed rank based loss func-

tion outperforms the hard negative triplet margin loss, outperforming similar ap-

proaches on the caption retrieval task.

Cross-modal retrieval results can be found in Table 5.4. The model trained using

the proposed loss function (BEAN + SoDeep loss) outperforms the similar architecture

BEAN trained with the triplet margin based loss by (1.7%,0.9%,0.5%) on (R@1,R@5,R@10)

in absolute for caption retrieval, and by (0.3%,0.1%,0.3%) for image retrieval. It obtains

state-of-the-art performance on caption retrieval and is very competitive on image

retrieval being almost on par with the GXN [35] model, which has a much more

complex architecture. It is important to note that the loss function proposed could be

beneficial for any type of architecture.
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5.6 Discussion

One could assume that the loss function for recall in Equation 5.11 could be simplified

to:

LREC(ΘA,B) = 1
d ∑

i∈B
fΘB(Y[i])p. (5.13)

With the idea that minimizing the rank of the positive pairs is the only thing needed. It

would be a correct assumption, indeed backpropagation through the sorter should be

enough to also update the negative elements without having to explicitly use them in

the loss.

However, we found an interesting behavior when using Equation 5.13 to train our

VSE model. When we started fine-tuning the parameters of the ResNet, the value of the

loss kept decreasing while the evaluation performance stopped increasing accordingly.

Further analysis revealed that this behavior could be linked to a drop in accuracy of

the sorting network fΘB . With enough free parameters, the visual pipeline was able to

“trick” the sorting network in outputting optimal rank, not corresponding to the input

similarity scores but minimizing the overall loss.

In other words, the train model behaves in an adversarial mode to minimize the loss.

Formulating the loss in terms of triplets made it possible to avoid the shortcoming of

the sorting network and made training more robust.

This example reflects two connected limitations of the SoDeep approach:

• A transfer learning problem, since the sorter is trained on synthetic data there is

no guarantee to have the training distribution matching the distribution on real

applications.

• A robustness problem, the approximation learn by the sorter is not perfect and

can be “tricked”.

Multiple approaches might be used to mitigate these limitations, we implemented

some of them. We increased the robustness of the sorter by training it on a wide range

of distributions and using a powerful architecture.
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To fight both limitations we could also imagine dynamic training where both the

trained model and the sorter would be updated simultaneously. The sorter would adapt

to the distribution produced by the model. This solution seems promising but raise

other training stability problems and could be explored in future work.

5.7 Conclusion

In this chapter we introduced SoDeep, a novel method that leverages the expressivity of

recent architectures to learn differentiable surrogate functions. Based on a direct deep

network modeling of the sorting operation, such a surrogate allows us to train, in an

end-to-end manner, models on a diversity of tasks that are traditionally evaluated with

rank-based metrics. Remarkably, this deep proxy to estimate the rank comes at virtually

no cost since it is easily trained on purely synthetic data.

Our experiments show that the proposed approach achieves good performance on

cross-modal retrieval tasks as well as on media memorability prediction and multi-label

image classification. These experiments demonstrate the potential and the versatility of

SoDeep. This approach allows the design of training losses that are closer than before to

metrics of interest, which opens up a wide range of other applications in the future. In

particular it would be interesting to test this method on non-rank related function.
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6.1 Summary of contributions

In this thesis we extended Visual Semantic Embedding with the introduction of two

models: SMILE and BEAN. Each of them with their specificity and their ability to localize

concepts. In parallel we also explored training method for VSE and more generally for

rank-based problems with the introduction of SoDeep, which learns approximation of

non-differentiable ranking metrics.

bean We proposed BEAN a visual semantic embedding architecture that leverages

the progress made both in visual and textual representation. The visual pipeline is fully

convolutional and uses ResNet and selective spatial pooling while the textual pipeline

is based on the efficient SRU. Trained with aligned paired of images and text from

MS-COCO with the hard negative contrastive loss, it showed competitive performance

again similar architecture on cross-modal retrieval. Most importantly it showed promis-

ing results when used for visual grounding. Trained without any spatial supervision, it

was able to outperform other weakly supervised methods on the pointing game and to

generalize to elements and concepts unseen during training.

smile SMILE is the second architecture introduced, it uses more sophisticated visual

features coming from Faster R-CNN. Using the same textual representation as BEAN

107
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and combined with the proposed distributed self-attention mechanism it produced a

finer visual semantic alignment at the cost of a spatially supervised pre-training of

Faster R-CNN. When tested on cross-modal retrieval, on MS-COCO and Flickr-30K it

outperforms every existing method based on the same visual “Bottom-up” features.

Transferring the spatial information learned during training to the joint embedding

space, it also proved to be successful on visual grounding of phrases.

sodeep Finally, we proposed a new method to design ranking loss functions with

SoDeep. SoDeep is a new type of loss function; it is a differentiable proxy that is learned

to mimic the non-differentiable ranking operation. Once learned we used it to derive

approximation for the mAP, the Spearmann correlation and recall. We extensively tested

these new loss functions using three different tasks and demonstrated the benefit of

our approach. First, we showed it was a good alternative to the triplet loss to train VSE,

then that it could also benefit ordinal regression on visual memorability and multi-label

image classification on object recognition.

6.2 Perspectives and future work

The current performance of VSE on image-text matching might suggest that the task

is mostly solved and only minimal progress can be made. I believe it is not the case

and visual semantic representation has still a long way to go; at most we are starting to

reach the limitation of the current datasets and are overfitting the existing tasks. I also

believe there are many more tasks that could benefit from interaction between image

and text; with our attempt at textual grounding of visual concepts we started to uncover

the potential of VSE. In the future it might be a key element for the development of

human and machine interaction.

In the short term, multiple improvements to existing architectures could be made to

refine the current dual encoder pipelines, one of the more interesting concepts probably

is the attention idea. While attention mechanisms have already been explored in the

context of VSE, there is room for improvement. Overcoming the high computational cost

of cross-modal attention would go a long way in order to permit stronger multimodal

interactions.
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In the long term, improving multimodal interaction might require to rethink visual

and textual representation, helping models to learn finer representation by incorporating

stronger structure. With the development of deep learning, came the development

of differentiable programming frameworks such as Pytorch or Tensorflow; backed

by these tools, new research started to combine deterministic differentiable modules

with learnable networks in order to enforce structure into the representation which

is sometimes denoted as differentiable programming. For example, 3d differentiable

renderers are already used in combination with neural networks to extract faces’ mesh

from images or videos [85]. While it remains a challenge to generalize such ideas

to generic images, it could greatly improve visual representation by enforcing a 3d

representation of scenes. Improving model understanding and explainability would

open up novel opportunities for multimodal interaction and might be a step toward

perfect image-text matching.
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